首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary.  The method of Bayesian model selection for join point regression models is developed. Given a set of K +1 join point models M 0,  M 1, …,  M K with 0, 1, …,  K join points respec-tively, the posterior distributions of the parameters and competing models M k are computed by Markov chain Monte Carlo simulations. The Bayes information criterion BIC is used to select the model M k with the smallest value of BIC as the best model. Another approach based on the Bayes factor selects the model M k with the largest posterior probability as the best model when the prior distribution of M k is discrete uniform. Both methods are applied to analyse the observed US cancer incidence rates for some selected cancer sites. The graphs of the join point models fitted to the data are produced by using the methods proposed and compared with the method of Kim and co-workers that is based on a series of permutation tests. The analyses show that the Bayes factor is sensitive to the prior specification of the variance σ 2, and that the model which is selected by BIC fits the data as well as the model that is selected by the permutation test and has the advantage of producing the posterior distribution for the join points. The Bayesian join point model and model selection method that are presented here will be integrated in the National Cancer Institute's join point software ( http://www.srab.cancer.gov/joinpoint/ ) and will be available to the public.  相似文献   

2.
Estimating smooth monotone functions   总被引:1,自引:0,他引:1  
Many situations call for a smooth strictly monotone function f of arbitrary flexibility. The family of functions defined by the differential equation D  2 f  = w Df , where w is an unconstrained coefficient function comprises the strictly monotone twice differentiable functions. The solution to this equation is f = C 0 + C 1  D −1{exp( D −1 w )}, where C 0 and C 1 are arbitrary constants and D −1 is the partial integration operator. A basis for expanding w is suggested that permits explicit integration in the expression of f . In fitting data, it is also useful to regularize f by penalizing the integral of w 2 since this is a measure of the relative curvature in f . Applications are discussed to monotone nonparametric regression, to the transformation of the dependent variable in non-linear regression and to density estimation.  相似文献   

3.
Exact expressions for the cumulative distribution function of a random variable of the form ( α 1 X 1+ α 2 X 2)/ Y are given where X 1, X 2 and Y are independent chi-squared random variables. The expressions are applied to the detection of joint outliers and Hotelling's mis-specified T 2 distribution.  相似文献   

4.
Abstract.  We focus on a class of non-standard problems involving non-parametric estimation of a monotone function that is characterized by n 1/3 rate of convergence of the maximum likelihood estimator, non-Gaussian limit distributions and the non-existence of     -regular estimators. We have shown elsewhere that under a null hypothesis of the type ψ ( z 0) =  θ 0 ( ψ being the monotone function of interest) in non-standard problems of the above kind, the likelihood ratio statistic has a 'universal' limit distribution that is free of the underlying parameters in the model. In this paper, we illustrate its limiting behaviour under local alternatives of the form ψ n ( z ), where ψ n (·) and ψ (·) vary in O ( n −1/3) neighbourhoods around z 0 and ψ n converges to ψ at rate n 1/3 in an appropriate metric. Apart from local alternatives, we also consider the behaviour of the likelihood ratio statistic under fixed alternatives and establish the convergence in probability of an appropriately scaled version of the same to a constant involving a Kullback–Leibler distance.  相似文献   

5.
Penalized likelihood methods provide a range of practical modelling tools, including spline smoothing, generalized additive models and variants of ridge regression. Selecting the correct weights for penalties is a critical part of using these methods and in the single-penalty case the analyst has several well-founded techniques to choose from. However, many modelling problems suggest a formulation employing multiple penalties, and here general methodology is lacking. A wide family of models with multiple penalties can be fitted to data by iterative solution of the generalized ridge regression problem minimize || W 1/2 ( Xp − y ) ||2ρ+Σ i =1 m  θ i p ' S i p ( p is a parameter vector, X a design matrix, S i a non-negative definite coefficient matrix defining the i th penalty with associated smoothing parameter θ i , W a diagonal weight matrix, y a vector of data or pseudodata and ρ an 'overall' smoothing parameter included for computational efficiency). This paper shows how smoothing parameter selection can be performed efficiently by applying generalized cross-validation to this problem and how this allows non-linear, generalized linear and linear models to be fitted using multiple penalties, substantially increasing the scope of penalized modelling methods. Examples of non-linear modelling, generalized additive modelling and anisotropic smoothing are given.  相似文献   

6.
In biostatistical applications interest often focuses on the estimation of the distribution of time T between two consecutive events. If the initial event time is observed and the subsequent event time is only known to be larger or smaller than an observed point in time, then the data is described by the well understood singly censored current status model, also known as interval censored data, case I. Jewell et al. (1994) extended this current status model by allowing the initial time to be unobserved, but with its distribution over an observed interval ' A, B ' known to be uniformly distributed; the data is referred to as doubly censored current status data. These authors used this model to handle application in AIDS partner studies focusing on the NPMLE of the distribution G of T . The model is a submodel of the current status model, but the distribution G is essentially the derivative of the distribution of interest F in the current status model. In this paper we establish that the NPMLE of G is uniformly consistent and that the resulting estimators for the n 1/2-estimable parameters are efficient. We propose an iterative weighted pool-adjacent-violator-algorithm to compute the estimator. It is also shown that, without smoothness assumptions, the NPMLE of F converges at rate n −2/5 in L 2-norm while the NPMLE of F in the non-parametric current status data model converges at rate n −1/3 in L 2-norm, which shows that there is a substantial gain in using the submodel information.  相似文献   

7.
In statistical models where jumps of a d -dimensional stable process ( S t ) t ≥0 are observed in windows with certain asymptotic properties, and where parameters appearing in the Levy measure of S are to be estimated, we have asymptotically efficient estimators. If Poisson random measure μ on (0, ∞) × ( R d \{0}) with intensity dt Λ( dx ) replaces the jump measure of S , where Λ is a ε-finite measure on R d \{0} admitting tail parameters in a suitable sense, we specify a notion of neighbourhood which allows to treat efficiency in statistical experiments of the second type by switching to accompanying sequences of the stable process type considered first.  相似文献   

8.
Summary.  For a binary treatment ν =0, 1 and the corresponding 'potential response' Y 0 for the control group ( ν =0) and Y 1 for the treatment group ( ν =1), one definition of no treatment effect is that Y 0 and Y 1 follow the same distribution given a covariate vector X . Koul and Schick have provided a non-parametric test for no distributional effect when the realized response (1− ν ) Y 0+ ν Y 1 is fully observed and the distribution of X is the same across the two groups. This test is thus not applicable to censored responses, nor to non-experimental (i.e. observational) studies that entail different distributions of X across the two groups. We propose ' X -matched' non-parametric tests generalizing the test of Koul and Schick following an idea of Gehan. Our tests are applicable to non-experimental data with randomly censored responses. In addition to these motivations, the tests have several advantages. First, they have the intuitive appeal of comparing all available pairs across the treatment and control groups, instead of selecting a number of matched controls (or treated) in the usual pair or multiple matching. Second, whereas most matching estimators or tests have a non-overlapping support (of X ) problem across the two groups, our tests have a built-in protection against the problem. Third, Gehan's idea allows the tests to make good use of censored observations. A simulation study is conducted, and an empirical illustration for a job training effect on the duration of unemployment is provided.  相似文献   

9.
The paper derives bounds on the distribution of the quadratic forms Z = y H( X Γ X H)−1 y and W = y H2 I + X Γ X H)−1 y , where the elements of the M × 1 vector y and the M × N matrix X are independent identically distributed (i.i.d.) complex zero mean Normal variables, Γ is some N × N diagonal matrix with positive diagonal elements, I , is the identity, σ2 is a constant and H denotes the Hermitian transpose. The bounds are convenient for numerical work and appear to be tight for small values of M . This work has applications in digital mobile radio for a specific channel where M antennas are used to receive a signal with N interferers. Some of these applications in radio communication systems are discussed.  相似文献   

10.
Abstract.  Consider the model Y = β ' X + ε . Let F 0 be the unknown cumulative distribution function of the random variable ε . Consistency of the semi-parametric Maximum likelihood estimator of ( β , F 0), denoted by     , has not been established under any interval censorship (IC) model. We prove in this paper that     is consistent under the mixed case IC model and some mild assumptions.  相似文献   

11.
Summary.  Because highly correlated data arise from many scientific fields, we investigate parameter estimation in a semiparametric regression model with diverging number of predictors that are highly correlated. For this, we first develop a distribution-weighted least squares estimator that can recover directions in the central subspace, then use the distribution-weighted least squares estimator as a seed vector and project it onto a Krylov space by partial least squares to avoid computing the inverse of the covariance of predictors. Thus, distrbution-weighted partial least squares can handle the cases with high dimensional and highly correlated predictors. Furthermore, we also suggest an iterative algorithm for obtaining a better initial value before implementing partial least squares. For theoretical investigation, we obtain strong consistency and asymptotic normality when the dimension p of predictors is of convergence rate O { n 1/2/ log ( n )} and o ( n 1/3) respectively where n is the sample size. When there are no other constraints on the covariance of predictors, the rates n 1/2 and n 1/3 are optimal. We also propose a Bayesian information criterion type of criterion to estimate the dimension of the Krylov space in the partial least squares procedure. Illustrative examples with a real data set and comprehensive simulations demonstrate that the method is robust to non-ellipticity and works well even in 'small n –large p ' problems.  相似文献   

12.
This paper considers record values of residuals or prediction errors in a one-parameter autoregressive process and the statistic Z n = number of ε -repetitions of this record. When the parameter of the autoregression is unknown, the prediction errors, and therefore Z n , are unobservable. Here an observable analogue ̂ n of Z n is considered. It is proved that under special conditions the difference Z n − unobservable. Here an observable analogue ̂ n converges to zero in probability and therefore that unobservable. Here an observable analogue ̂ n has the same asymptotic behaviour as Z n .  相似文献   

13.
Suppose that subjects in a population follow the model f   ( y * x *; ) where y * denotes a response, x * denotes a vector of covariates and is the parameter to be estimated. We consider response-biased sampling, in which a subject is observed with a probability which is a function of its response. Such response-biased sampling frequently occurs in econometrics, epidemiology and survey sampling. The semiparametric maximum likelihood estimate of is derived, along with its asymptotic normality, efficiency and variance estimates. The estimate proposed can be used as a maximum partial likelihood estimate in stratified response-selective sampling. Some computation algorithms are also provided.  相似文献   

14.
We are concerned with estimators which improve upon the best invariant estimator, in estimating a location parameter θ. If the loss function is L(θ - a) with L convex, we give sufficient conditions for the inadmissibility of δ0(X) = X. If the loss is a weighted sum of squared errors, we find various classes of estimators δ which are better than δ0. In general, δ is the convolution of δ1 (an estimator which improves upon δ0 outside of a compact set) with a suitable probability density in Rp. The critical dimension of inadmissibility depends on the estimator δ1 We also give several examples of estimators δ obtained in this way and state some open problems.  相似文献   

15.
Let X = (X1, - Xp)prime; ˜ Np (μ, Σ) where μ= (μ1, -, μp)' and Σ= diag (Σ21, -, Σ2p) are both unknown and p3. Let (ni - 2) wi2i! X2ni, independent. of wi (I ≠ j = 1, -, p). Assume that (w1, -, wp) and X are independent. Define W = diag (w1, -, wp) and ¶ X ¶2w= X'W-1Q-1W-1X where Q = diag (q1, -,n qp), qi > 0, i = 1, -, p. In this paper, the minimax estimator of Berger & Bock (1976), given by δ (X, W) = [Ip - r(X, W) ¶ X ¶-2w Q-1W-1] X, is shown to be minimax relative to the convex loss (δ - μ)'[αQ + (1 - α) Σ-1] δ - μ)/C, where C =α tr (Σ) + (1 - α)p and 0 α 1, under certain conditions on r(X, W). This generalizes the above mentioned result of Berger & Bock.  相似文献   

16.
Summary.  We consider the problem of multistep-ahead prediction in time series analysis by using nonparametric smoothing techniques. Forecasting is always one of the main objectives in time series analysis. Research has shown that non-linear time series models have certain advantages in multistep-ahead forecasting. Traditionally, nonparametric k -step-ahead least squares prediction for non-linear autoregressive AR( d ) models is done by estimating E ( X t + k  | X t , …,  X t − d +1) via nonparametric smoothing of X t + k on ( X t , …,  X t − d +1) directly. We propose a multistage nonparametric predictor. We show that the new predictor has smaller asymptotic mean-squared error than the direct smoother, though the convergence rate is the same. Hence, the predictor proposed is more efficient. Some simulation results, advice for practical bandwidth selection and a real data example are provided.  相似文献   

17.
Abstract.  Suppose that X 1 ,…,  X n is a sequence of independent random vectors, identically distributed as a d -dimensional random vector X . Let     be a parameter of interest and     be some nuisance parameter. The unknown, true parameters ( μ 0 , ν 0 ) are uniquely determined by the system of equations E { g ( X , μ 0 , ν 0 )} =   0 , where g  =  ( g 1 ,…, g p + q ) is a vector of p + q functions. In this paper we develop an empirical likelihood (EL) method to do inference for the parameter μ 0 . The results in this paper are valid under very mild conditions on the vector of criterion functions g . In particular, we do not require that g 1 ,…, g p + q are smooth in μ or ν . This offers the advantage that the criterion function may involve indicators, which are encountered when considering, e.g. differences of quantiles, copulas, ROC curves, to mention just a few examples. We prove the asymptotic limit of the empirical log-likelihood ratio, and carry out a small simulation study to test the performance of the proposed EL method for small samples.  相似文献   

18.
Summary.  Principal component analysis has become a fundamental tool of functional data analysis. It represents the functional data as X i ( t )= μ ( t )+Σ1≤ l <∞ η i ,  l +  v l ( t ), where μ is the common mean, v l are the eigenfunctions of the covariance operator and the η i ,  l are the scores. Inferential procedures assume that the mean function μ ( t ) is the same for all values of i . If, in fact, the observations do not come from one population, but rather their mean changes at some point(s), the results of principal component analysis are confounded by the change(s). It is therefore important to develop a methodology to test the assumption of a common functional mean. We develop such a test using quantities which can be readily computed in the R package fda. The null distribution of the test statistic is asymptotically pivotal with a well-known asymptotic distribution. The asymptotic test has excellent finite sample performance. Its application is illustrated on temperature data from England.  相似文献   

19.
There has been much recent interest in supersaturated designs and their application in factor screening experiments. Supersaturated designs have mainly been constructed by using the E ( s 2)-optimality criterion originally proposed by Booth and Cox in 1962. However, until now E ( s 2)-optimal designs have only been established with certainty for n experimental runs when the number of factors m is a multiple of n-1 , and in adjacent cases where m = q ( n -1) + r (| r | 2, q an integer). A method of constructing E ( s 2)-optimal designs is presented which allows a reasonably complete solution to be found for various numbers of runs n including n ,=8 12, 16, 20, 24, 32, 40, 48, 64.  相似文献   

20.
Summary.  Deconvolution problems are naturally represented in the Fourier domain, whereas thresholding in wavelet bases is known to have broad adaptivity properties. We study a method which combines both fast Fourier and fast wavelet transforms and can recover a blurred function observed in white noise with O { n    log ( n )2} steps. In the periodic setting, the method applies to most deconvolution problems, including certain 'boxcar' kernels, which are important as a model of motion blur, but having poor Fourier characteristics. Asymptotic theory informs the choice of tuning parameters and yields adaptivity properties for the method over a wide class of measures of error and classes of function. The method is tested on simulated light detection and ranging data suggested by underwater remote sensing. Both visual and numerical results show an improvement over competing approaches. Finally, the theory behind our estimation paradigm gives a complete characterization of the 'maxiset' of the method: the set of functions where the method attains a near optimal rate of convergence for a variety of L p loss functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号