首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The rapid response to the requirements of customers and markets promotes the concurrent engineering (CE) technique in product and process design. The decision making for process quality target, SPC method, sampling plan, and control chart parameter design can be done at the stage of process quality plan based on historical data and process knowledge database. Therefore, it is a reasonable trend to introduce the concepts and achievements on process quality evaluation and process capability analysis, CE, and SPC techniques into process plan and tolerance design. A new systematic method for concurrent design of process quality, statistical tolerance (ST), and control chart is presented based on a NSFC research program. A set of standardized process quality indices (PQIs) for variables is introduced for meeting the measurement and evaluation to process yield, process centering, and quality loss. This index system that has relatively strong compatibility and adaptability is based on raisonne grading by using the series of preferred numbers and arithmetical progression. The expected process quality based on this system can be assured by a standardized interface between PQIs and SPC, that is, quality-oriented statistical tolerance zone. A quality-oriented ST and SPC approach that quantitatively specifies what a desired process is and how to assure it will realize the optimal control for a process toward a predetermined quality target.  相似文献   

2.
The np control chart is used widely in Statistical Process Control (SPC) for attributes. It is difficult to design an np chart that simultaneously satisfies a requirement on false alarm rate and has high detection effectiveness. This is mainly because one is often unable to make the in-control Average Run Length ARL0 of an np chart close to a specified or desired value. This article proposes a new np control chart which is able to overcome the problems suffered by the conventional np chart. It is called the Double Inspection (DI) np chart, because it uses a double inspection scheme to decide the process status (in control or out of control). The first inspection decides the process status according to the number of non-conforming units found in a sample; and the second inspection makes a decision based on the location of a particular non-conforming unit in the sample. The double inspection scheme makes the in-control ARL0 very close to a specified value and the out-of-control Average Run Length ARL1 quite small. As a result, the requirement on a false alarm rate is satisfied and the detection effectiveness also achieves a high level. Moreover, the DI np chart retains the operational simplicity of the np chart to a large degree and achieves the performance improvement without requiring extra inspection (testing whether a unit is conforming or not).  相似文献   

3.
Among innovations and improvements that occurred in the past two decades on the techniques and tools used for statistical process control (SPC), adaptive control charts have shown to substantially improve the statistical and/or economical performances. Variable sampling intervals (VSI) control charts are one of the most applied types of the adaptive control charts and have shown to be faster than traditional Shewhart control charts in identifying small changes of concerned quality characteristics. While in the designing procedure of the VSI control charts the data or measurements are assumed independent normal observations, in real situations the validity of these assumptions is under question in many processes. This article develops an economic-statistical design of a VSI X-bar control chart under non-normality and correlation. Since the proposed design consists of a complex nonlinear cost model that cannot be solved using a classical optimization method, a genetic algorithm (GA) is employed to solve it. Moreover, to improve the performances, response surface methodology (RSM) is employed to calibrate GA parameters. The solution procedure, efficiency, and sensitivity analysis of the proposed design are demonstrated through a numerical illustration at the end.  相似文献   

4.
关于单变量统计过程控制图某些研究结果简介   总被引:1,自引:0,他引:1  
文章仅对一元连续变量的静态与动态控制图研究现状进行了简单的总结和介绍,并给出了较详细的参考文献,希望为国内开展此方向的研究抛砖引玉。  相似文献   

5.
Robust control charts are useful in statistical process control (SPC) when there is limited knowledge about the underlying process distribution, especially for multivariate observations. This article develops a new robust and self-starting multivariate procedure based on multivariate Smirnov test (MST), which integrates a multivariate two-sample goodness-of-fit (GOF) test based on multivariate empirical distribution function (MEDF) and the change-point model. As expected, simulation results show that our proposed control chart is robust to nonnormally distributed data, and moreover, it is efficient in detecting process shifts, especially large shifts, which is one of the main drawbacks of most robust control charts in the literature. As it avoids the need for a lengthy data-gathering step, the proposed chart is particularly useful in start-up or short-run situations. Comparison results and a real data example show that our proposed chart has great potential for application.  相似文献   

6.
Optimal statistical process control (SPC) requires models of both in-control and out-of-control process states. Whereas a normal distribution is the generally accepted model for the in-control state, there is a doubt as to the existence of reliable models for out-of-control cases. Various process models, available in the literature, for discrete manufacturing systems (parts industry) can be treated as bounded discrete-space Markov chains, completely characterized by the original in-control state and a transition matrix for shifts to an out-of-control state. The present work extends these models by using a continuous-state Markov chain, incorporating non-random corrective actions. These actions are to be realized according to the SPC technique and should substantially affect the model. The developed stochastic model yields a Laplace distribution of a process mean. An alternative approach, based on the Information theory, also results in a Laplace distribution. Real-data tests confirm the applicability of a Laplace distribution for the parts industry and show that the distribution parameter is mainly controlled by the SPC sample size.  相似文献   

7.
Nonparametric control charts are useful in statistical process control (SPC) when there is a lack of or limited knowledge about the underlying process distribution, especially when the process measurement is multivariate. This article develops a new multivariate SPC methodology for monitoring location parameter based on adapting a well-known nonparametric method, empirical likelihood (EL), to on-line sequential monitoring. The weighted version of EL ratio test is used to formulate the charting statistic by incorporating the exponentially weighted moving average control (EWMA) scheme, which results in a nonparametric counterpart of the classical multivariate EWMA (MEWMA). Some theoretical and numerical studies show that benefiting from using EL, the proposed chart possesses some favorable features. First, it is a data-driven scheme and thus is more robust to various multivariate non-normal data than the MEWMA chart under the in-control (IC) situation. Second, it is transformation-invariant and avoids the estimation of covariance matrix from the historical data by studentizing internally, and hence its IC performance is less deteriorated when the number of reference sample is small. Third, in comparison with the existing approaches, it is more efficient in detecting small and moderate shifts for multivariate non-normal process.  相似文献   

8.
In this paper, the problem of monitoring process data that can be modelled by exponential distribution is considered when observations are from type-II censoring. Such data are common in many practical inspection environment. An average run length unbiased (ARL-unbiased) control scheme is developed when the in-control scale parameter is known. The performance of the proposed control charts are investigated in terms of the ARL and standard deviation of the run length. The effects of parameter estimation on the proposed control charts are also evaluated. Then, we consider the design of the ARL-unbiased control charts when the in-control scale parameter is estimated. Finally, an example is used to illustrate the implementation of the proposed control charts.  相似文献   

9.
In recent years, statistical process control (SPC) of multivariate and autocorrelated processes has received a great deal of attention. Modern manufacturing/service systems with more advanced technology and higher production rates can generate complex processes in which consecutive observations are dependent and each variable is correlated. These processes obviously violate the assumption of the independence of each observation that underlies traditional SPC and thus deteriorate the performance of its traditional tools. The popular way to address this issue is to monitor the residuals—the difference between the actual value and the fitted value—with the traditional SPC approach. However, this residuals-based approach requires two steps: (1) finding the residuals; and (2) monitoring the process. Also, an accurate prediction model is necessary to obtain the uncorrelated residuals. Furthermore, these residuals are not the original values of the observations and consequently may have lost some useful information about the targeted process. The main purpose of this article is to examine the feasibility of using one-class classification-based control charts to handle multivariate and autocorrelated processes. The article uses simulated data to present an analysis and comparison of one-class classification-based control charts and the traditional Hotelling's T 2 chart.  相似文献   

10.
The close relationship between quality and maintenance of manufacturing systems has contributed to the development of integrated models which use the concept of statistical process control (SPC) and maintenance. This article demonstrates the integration of the Shewhart individual-residual (ZX ? Ze) joint control chart and maintenance for two-stage dependent processes by jointly optimizing their policies to minimize the expected total costs associated with quality, maintenance and inspection. To evaluate the effectiveness of the proposed model, two stand-alone models—a maintenance model and an SPC model—are proposed. Then a numerical example is given to illustrate the application of the proposed integrated model. The results show that the integrated model outperforms the two stand-alone models with regard to the expected cost per unit time. Finally, a sensitivity analysis is conducted to develop insights into time parameters and cost parameters that influence the integration efforts.  相似文献   

11.
In the design of control charts, it is usually assumed that process parameters are known. However, in many practical applications the values of these parameters are unknown and should be estimated using historical in-control process observations. In this study, the performance of adaptive c-chart with estimated parameter is evaluated. It is demonstrated that by increasing the size and the number of samples in estimating the process parameter, the performance of the chart converges to that of the known parameter case. Finally the best phase I sampling scenarios are presented to make the chart with the estimated parameter perform as well as the chart with the known parameter.  相似文献   

12.
For controlling quality of products, there are two things we have to consider; how to measure the quality and how to improve it. The former is discussed in section 2 by introducing the difference in quality levels between Japan and USA. After briefly introducing all countermeasures for improving quality of products, an on-line quality control system design is proposed as the one which is more economical than removing defec- tives after manufacturing by conducting inspection. It has been ma?y Japanese companies' policy to keep pro- cess conditions at best in order to produce uniform products as far as possible. This paper discusses the optimum feed-back process control system design by checking either quality characteristics or process pa- rameters after introducing overall quality countermea- sures starting with product design.  相似文献   

13.
A common approach to building control charts for autocorrelated data is to apply classical SPC to the residuals from a time series model of the process. However, Shewhart charts and even CUSUM charts are less sensitive to small shifts in the process mean when applied to residuals than when applied to independent data. Using an approximate analytical model, we show that the average run length of a CUSUM chart for residuals can be reduced substantially by modifying traditional chart design guidelines to account for the degree of autocorrelation in the data.  相似文献   

14.
An integrated process control (IPC) procedure is a scheme which combines the engineering process control (EPC) and the statistical process control (SPC) procedures for the process where the noise and a special cause are present. The most efficient way of reducing the effect of the noise is to adjust the process by its forecast, which is done by the EPC procedure. The special cause, which produces significant deviations of the process level from the target, can be detected by the monitoring scheme, which is done by the SPC procedure. The effects of special causes can be eliminated by a rectifying action. The performance of the IPC procedure is evaluated in terms of the average run length (ARL) or the expected cost per unit time (ECU). In designing the IPC procedure for practical use, it is essential to derive its properties constituting the ARL or ECU based on the proposed process model. The process is usually assumed as it starts only with noise, and special causes occur at random times afterwards. The special cause is assumed to change the mean as well as all the parameters of the in-control model. The linear filter models for the process level as well as the controller and the observed deviations for the IPC procedure are developed here.  相似文献   

15.
Abstract

Robust parameter design (RPD) is an effective tool, which involves experimental design and strategic modeling to determine the optimal operating conditions of a system. The usual assumptions of RPD are that normally distributed experimental data and no contamination due to outliers. And generally the parameter uncertainties in response models are neglected. However, using normal theory modeling methods for a skewed data and ignoring parameter uncertainties can create a chain of degradation in optimization and production phases such that misleading fit, poor estimated optimal operating conditions, and poor quality products. This article presents a new approach based on confidence interval (CI) response modeling for the process mean. The proposed interval robust design makes the system median unbiased for the mean and uses midpoint of the interval as a measure of location performance response. As an alternative robust estimator for the process variance response modeling, using biweight midvariance is proposed which is both resistant and robust of efficiency where normality is not met. The results further show that the proposed interval robust design gives a robust solution to the skewed structure of the data and to contaminated data. The procedure and its advantages are illustrated using two experimental design studies.  相似文献   

16.
The quality characteristics, which are known as attributes, cannot be conveniently and numerically represented. Generally, the attribute data can be regarded as the fuzzy data, which are ubiquitous in the manufacturing process and cannot be measured precisely and often be collected by visual inspection. In this paper, we construct a p control chart for monitoring the fraction of nonconforming items in the process in which fuzzy sample data are collected from the manufacturing process. The resolution identity – a well-known theorem in the fuzzy set theory – is invoked to construct the control limits of fuzzy-p control charts using fuzzy data. In order to determine whether the plotted imprecise fraction of nonconforming items is within the fuzzy lower and upper control limits, we also propose a ranking method for a set of fuzzy numbers. Using the fuzzy-p control charts and the proposed acceptability function to classify the manufacturing process allows the decision-maker to make linguistic decisions such as rather in control or rather out of control. A practical example is provided to describe the applicability of the fuzzy set theory to a conventional p control chart.  相似文献   

17.
In process control the simple x-charts are widely used. In determining an optimum economic design for such a control procedure the time of satisfactory production is usually assumed to be exponentially distributed. In this paper deviations from this optimistic approach are investigated by comparing E-optimal x-charts (using the assumption of an exponentially distributed lifetime) and M-optimal x-charts which are obtained by tfie pessimistic muumax principle applied to all possible lifetime distributions with the same mean value. The comparison shows that the differences between E- and M-optimal x-charts are only minor with respect to a suitable loss function and therefore, the model under consideration is verv robust against deviations from the assumption about the distribution of the time of satisfactory production.  相似文献   

18.
The gist of the quickest change-point detection problem is to detect the presence of a change in the statistical behavior of a series of sequentially made observations, and do so in an optimal detection-speed-versus-“false-positive”-risk manner. When optimality is understood either in the generalized Bayesian sense or as defined in Shiryaev's multi-cyclic setup, the so-called Shiryaev–Roberts (SR) detection procedure is known to be the “best one can do”, provided, however, that the observations’ pre- and post-change distributions are both fully specified. We consider a more realistic setup, viz. one where the post-change distribution is assumed known only up to a parameter, so that the latter may be misspecified. The question of interest is the sensitivity (or robustness) of the otherwise “best” SR procedure with respect to a possible misspecification of the post-change distribution parameter. To answer this question, we provide a case study where, in a specific Gaussian scenario, we allow the SR procedure to be “out of tune” in the way of the post-change distribution parameter, and numerically assess the effect of the “mistuning” on Shiryaev's (multi-cyclic) Stationary Average Detection Delay delivered by the SR procedure. The comprehensive quantitative robustness characterization of the SR procedure obtained in the study can be used to develop the respective theory as well as to provide a rational for practical design of the SR procedure. The overall qualitative conclusion of the study is an expected one: the SR procedure is less (more) robust for less (more) contrast changes and for lower (higher) levels of the false alarm risk.  相似文献   

19.
ABSTRACT

The procedure for online control by attribute consists of inspecting a single item at every m items produced (m ≥ 2). On each inspection, it is determined whether the fraction of the produced conforming items decreased. If the inspected item is classified as non conforming, the productive process is adjusted so that the conforming fraction returns to its original status. A generalization observed in the literature is to consider inspection errors and vary the inspection interval. This study presents an extension of this model by considering that the inspected item can be rated independently r (r ≥ 1) times. The process is adjusted every time the number of conforming classifications is less than a, 1 ≤ a ≤ r. This method uses the properties of an ergodic Markov chain to obtain the expression for the average cost of this control system. The genetic algorithm methodology is used to search for the optimal parameters that minimize the expected cost. The procedure is illustrated by a numerical example.  相似文献   

20.
Nonparametric control chart is useful when the underlying distribution is unknown, or is not likely to be normal. In this article, we provide a sequential rank-based nonparametric adaptive EWMA (NAE) control chart for detecting the persistent shift in the location parameter. This NAE chart is a self-starting scheme and thus can be used to monitor processes at the start-up stages rather than waiting for the accumulation of sufficiently large calibration samples. Moreover, we do not require any prior knowledge of the underlying distribution, and to prespecify any tuning parameter either. A Markov chain model is suggested to calibrate the run-length distribution of NAE, which is shown to have approximate tail probability as a geometric distribution. A simulation study demonstrates that the proposed control chart not only performs robustly for different distributions, but also is efficient in detecting various magnitude of shifts. A real-data example from manufacturing shows that it performs quite well in practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号