首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non parametric control charts have received increasing attention in the field of statistical process control. This paper presents a non parametric double generally weighted moving average (DGWMA) sign chart for monitoring small deviations when the quality characteristics of a process are unknown. The statistical performance of the non parametric DGWMA sign chart is evaluated and compared with those of other charts, including the exponentially weighted moving average (EWMA), generally weighted moving average (GWMA), and double EWMA (DEWMA) sign charts. Simulation studies indicate that the non parametric DGWMA sign chart with a large design and median adjustment parameters is always more sensitive than other charts in detecting small changes.  相似文献   

2.
This article extends the generally weighted moving average (GWMA) technique for detecting changes in process variance. The proposed chart is called the generally weighted moving average variance (GWMAV) chart. Simulation is employed to evaluate the average run length (ARL) characteristics of the GWMAV and EWMA control charts. An extensive comparison of these control charts reveals that the GWMAV chart is more sensitive than the EWMA control charts for detecting small shifts in the variance of a process when the shifts are below 1.35 standard deviations. Additionally, the GWMAV control chart performs little better when the variance shifts are between 1.35 and 1.5 standard deviation, and the 2 charts performs similar when the variance shifts are above 1.5 standard deviation. The design of the GWMAV chart is also discussed.  相似文献   

3.
In this article, we propose a new control chart called the maximum chi-square generally weighted moving average (MCSGWMA) control chart. This control chart can effectively combine two generally weighted moving average (GWMA) control charts into a single one and can detect both increases as well as decreases in the process mean and/or variability simultaneously. The average run length (ARL) characteristics of the MCSGWMA and maximum exponentially weighted moving average (MaxEWMA) charts are evaluated by performing computer simulations. The comparison of the ARLs shows that the MCSGWMA control chart performs better than the MaxEWMA control chart.  相似文献   

4.
The generally weighted moving average (GWMA) control chart is an extension model of exponentially weighted moving average (EWMA) control chart. Recently, some approaches have been proposed to modify EWMA charts with fast initial response (FIR) features. We introduce these approaches in GWMA-type charts. Via simulation, various control schemes are designed and then their average run lengths are computed and compared. Based on the overall performance, it is showed that the DGWMA chart is the best choice especially when the shift is moderate, and the GWMA charts provided with additional FIR feature have a good performance only in detecting large shifts during the initial stage.  相似文献   

5.
In this article, we extend a single exponentially weighted moving average semicircle (EWMA-SC) chart to a single generally weighted moving average (GWMA) chart. This new control chart can effectively combine the features of the SC chart with GWMA techniques, and can easily indicate the source and direction of a change. We perform simulations to evaluate the average run length, standard deviation of the run length, and diagnostic abilities of the GWMA-SC and EWMA-SC charts. An extensive comparison shows that the GWMA-SC control chart is more sensitive than the EWMA-SC chart for detecting small shifts in the process mean and/or variability.  相似文献   

6.
The double exponentially weighted moving average (DEWMA) technique has been investigated in recent years for detecting shifts in the process mean and has been shown to be more efficient than the corresponding exponentially weighted moving average (EWMA) technique. In this article, we extend the DEWMA technique of performing exponential smoothing twice to the double moving average (DMA) technique by computing the moving average twice. Using simulation, we show that our proposed DMA chart improves upon the ARL performance of the moving average (MA) chart in detecting mean shifts of small to moderate magnitudes. It is also shown through simulation that, generally, the DMA charts with spans, w = 10 and 15 provide comparable average run length (ARL) performances to the EWMA and cumulative sum (CUSUM) charts, designed for detecting small shifts.  相似文献   

7.
The memory-type control charts are widely used in the process and service industries for monitoring the production processes. The reason is their sensitivity to quickly react against the small process disturbances. Recently, a new cumulative sum (CUSUM) chart has been proposed that uses the exponentially weighted moving average (EWMA) statistic, called the EWMA–CUSUM chart. Similarly, in order to further enhance the sensitivity of the EWMA–CUSUM chart, we propose a new CUSUM chart using the generally weighted moving average (GWMA) statistic, called the GWMA–CUSUM chart, for efficiently monitoring the process mean. The GWMA–CUSUM chart encompasses the existing CUSUM and EWMA–CUSUM charts. Extensive Monte Carlo simulations are used to explore the run length profiles of the GWMA–CUSUM chart. Based on comprehensive run length comparisons, it turns out that the GWMA–CUSUM chart performs substantially better than the CUSUM, EWMA, GWMA, and EWMA–CUSUM charts when detecting small shifts in the process mean. An illustrative example is also presented to explain the implementation and working of the EWMA–CUSUM and GWMA–CUSUM charts.  相似文献   

8.
ABSTRACT

A generally weighted moving average (GWMA) control chart with fast initial response (FIR) features is addressed to monitor an autoregressive process mean shift. Numerical simulations based on average run length (ARL) show that the GWMA control chart with additional FIR feature requires less time to detect small or moderate shifts than GWMA control chart at low level of autocorrelation; whereas these two control charts perform similarly at high level of autocorrelation. Regardless of any level of autocorrelation, GWMA control charts provided with additional FIR feature have a good performance in detecting large shifts during the initial stage.  相似文献   

9.
Traditionally, using a control chart to monitor a process assumes that process observations are normally and independently distributed. In fact, for many processes, products are either connected or autocorrelated and, consequently, obtained observations are autocorrelative rather than independent. In this scenario, applying an independence assumption instead of autocorrelation for process monitoring is unsuitable. This study examines a generally weighted moving average (GWMA) with a time-varying control chart for monitoring the mean of a process based on autocorrelated observations from a first-order autoregressive process (AR(1)) with random error. Simulation is utilized to evaluate the average run length (ARL) of exponentially weighted moving average (EWMA) and GWMA control charts. Numerous comparisons of ARLs indicate that the GWMA control chart requires less time to detect various shifts at low levels of autocorrelation than those at high levels of autocorrelation. The GWMA control chart is more sensitive than the EWMA control chart for detecting small shifts in a process mean.  相似文献   

10.
In this article we perform a careful investigation of the double exponentially weighted moving average (DEWMA) chart performance for monitoring the process mean. We compare the performance of this chart to the usual EWMA control chart based on zero-state and worst-case average run length (ARL) measures. We also evaluate the signal resistance measure of the DEWMA chart and compare its maximum value to that of the EWMA chart. We show that the superiority of the DEWMA chart over the simpler standard EWMA chart based on zero-state ARL performance disappears when the smoothing constant of the EWMA chart is chosen to give weights to past observations closer to those given by the DEWMA chart. Moreover, our results show that the standard EWMA chart has much better performance than the DEWMA chart in terms of worst-case ARL values, especially when small smoothing constants are used. We also demonstrate using an illustrative example that the DEWMA chart can build up an exceedingly large amount of inertia when used to monitor the process mean.  相似文献   

11.
A synthetic mean square error (MSE) control chart is presented in this study for monitoring the changes in the mean and standard deviation of a normally distributed process. The synthetic MSE control chart is a combination of the standard MSE control chart and the conforming run length (CRL) control chart. From the numerical comparisons, the synthetic MSE control chart is always more efficient than the standard MSE control chart in detecting shifts in the process mean and standard deviation. The synthetic MSE chart also performs better than the exponentially weighted moving average-semicircle (EWMA-SC) chart, except for some cases where the process mean shifts are small.  相似文献   

12.
In this article, we will present a control chart using normal transformation and generally weighted moving average (GWMA) statistic when the quality characteristic follows the exponential distribution. We will develop the necessary measures to monitor the mean of the process using GWMA statistic and analyze the performance using simulation. The average run lengths for monitoring process average are given for various process shifts. The performance of the proposed chart is examined and compared with the existing control chart. The proposed control chart is effective for the monitoring of small shifts in the mean process. The application of the proposed chart is illustrated with the help of simulated data.  相似文献   

13.
A generally weighted moving average (GWMA) control chart for monitoring Poisson observations is introduced. Using simulation, its average run lengths and standard deviations of run lengths are compared with those of other control charts for Poisson data. It is shown that the Poisson GWMA chart outperforms other control charts, especially when the process shift is small.  相似文献   

14.
In this article, we propose a new control chart called the sum of squares generally weighted moving average (SS-GWMA) control chart to simultaneously detect both the increase and decrease in the mean and/or variability. This new scheme is compared with the sum of squares exponentially weighted moving average (SS-EWMA) control chart. A simulation study is conducted to show that SS-GWMA control charts outperform SS-EWMA charts, in terms of the average run length (ARL), standard deviation of run length (SDRL), and diagnostic abilities. The design of SS-GWMA control charts is also discussed.  相似文献   

15.
Statistical quality control charts have been widely accepted as a potentially powerful process monitoring tool because of their excellent speed in tracking shifts in the underlying process parameter(s). In recent studies, auxiliary-information-based (AIB) control charts have shown superior run length performances than those constructed without using it. In this paper, a new double sampling (DS) control chart is constructed whose plotting-statistics requires information on the study variable and on any correlated auxiliary variable for efficiently monitoring the process mean, namely AIB DS chart. The AIB DS chart also encompasses the classical DS chart. We discuss in detail the construction, optimal design, run length profiles, and the performance evaluations of the proposed chart. It turns out that the AIB DS chart performs uniformly better than the DS chart when detecting different kinds of shifts in the process mean. It is also more sensitive than the classical synthetic and AIB synthetic charts when detecting a particular shift in the process mean. Moreover, with some realistic beliefs, the proposed chart outperforms the exponentially weighted moving average chart. An illustrative example is also presented to explain the working and implementation of the proposed chart.  相似文献   

16.
Abstract

Generally weighted moving average (GWMA) control charts have been validated for effective detection of small process shifts, and perform better than exponentially weighted moving average (EWMA) control charts. These charts are available based on single sampling; however, repetitive sampling charts have received less attention. Here, a GWMA control chart based on repetitive sampling (namely an RS-GWMA chart) is proposed for enhancing detectability of small process shifts. Simulations show that the proposed RS-GWMA chart with large design and small adjustment parameters outperforms existing hybrid EWMA (HEWMA) control charts based on repetitive sampling. An in-silico example is considered for demonstrating the applicability of the proposed RS-GWMA chart.  相似文献   

17.
ABSTRACT

Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much service data come from a process with variables having non-normal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, should not be properly used in such circumstances. In this paper, we propose a new variance chart based on a simple statistic to monitor process variance shifts. We explore the sampling properties of the new monitoring statistic and calculate the average run lengths (ARLs) of the proposed variance chart. Furthermore, an arcsine transformed exponentially weighted moving average (EWMA) chart is proposed because the ARLs of this modified chart are more intuitive and reasonable than those of the variance chart. We compare the out-of-control variance detection performance of the proposed variance chart with that of the non-parametric Mood variance (NP-M) chart with runs rules, developed by Zombade and Ghute [Nonparametric control chart for variability using runs rules. Experiment. 2014;24(4):1683–1691], and the nonparametric likelihood ratio-based distribution-free exponential weighted moving average (NLE) chart and the combination of traditional exponential weighted moving average (EWMA) mean and EWMA variance (CEW) control chart proposed by Zou and Tsung [Likelihood ratio-based distribution-free EWMA control charts. J Qual Technol. 2010;42(2):174–196] by considering cases in which the critical quality characteristic has a normal, a double exponential or a uniform distribution. Comparison results showed that the proposed chart performs better than the NP-M with runs rules, and the NLE and CEW control charts. A numerical example of service times with a right-skewed distribution from a service system of a bank branch in Taiwan is used to illustrate the application of the proposed variance chart and of the arcsine transformed EWMA chart and to compare them with three existing variance (or standard deviation) charts. The proposed charts show better detection performance than those three existing variance charts in monitoring and detecting shifts in the process variance.  相似文献   

18.
ABSTRACT

Quality control charts have been widely recognized as a potentially powerful statistical process monitoring tool in statistical process control because of their superior ability in detecting shifts in the process parameters. Recently, auxiliary-information-based control charts have been proposed and shown to have excellent speed in detecting process shifts than those based without it. In this paper, we design a new synthetic control chart that is based on a statistic that utilizes information from both the study and auxiliary variables. The proposed synthetic chart encompasses the classical synthetic chart. The construction, optimal design, run length profiles, and the performance evaluation of the new chart are discussed in detail. It turns out that the proposed synthetic chart performs uniformly better than the classical synthetic chart when detecting different kinds of shifts in the process mean under both zero-state and steady-state run length performances. Moreover, with reasonable assumptions, the proposed chart also surpasses the exponentially weighted moving average control chart. An application with a simulated data set is also presented to explain the implementation of the proposed control chart.  相似文献   

19.
The Poisson GWMA (PGWMA) control chart is an extension model of Poisson EWMA chart. It is substantially sensitive to small process shifts for monitoring Poisson observations. Recently, some approaches have been proposed to modify EWMA charts with fast initial response (FIR) features. In this article, we employ these approaches in PGWMA charts and introduce a novel chart called Poisson double GWMA (PDGWMA) chart for comparison. Using simulation, various control schemes are designed and their average run lengths (ARLs) are computer and compared. It is shown that the PDGWMA chart is the first choice in detecting small shifts especially when the shifts are downward, and the PGWMA chart with adjusted time-varying control limits performs excellently in detecting great process shifts during the initial stage.  相似文献   

20.
A multivariate extension of the adaptive exponentially weighted moving average (AEWMA) control chart is proposed. The new multivariate scheme can detect small and large shifts in the process mean vector effectively. The proposed scheme can be viewed as a smooth combination of a multivariate exponentially weighted moving average (MEWMA) chart and a Shewhart χ2-chart. The optimal design of the proposed chart is given according to a pre-specified in-control average run length and two shift sizes; a small and large shift each measured in terms of the non centrality parameter. The signal resistance of the newly proposed multivariate chart is also given. Comparisons among the new chart, the MEWMA chart, and the combined Shewhart-MEWMA (S-MEWMA) chart in terms of the standard and worst-case average run length profiles are presented. In addition, the three charts are compared with respect to their worst-case signal resistance values. The proposed chart gives somewhat better worst-case ARL and signal resistance values than the competing charts. It also gives better standard ARL performance especially for moderate and large shifts. The effectiveness of our proposed chart is illustrated through an example with simulated data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号