首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Independent sets, induced matchings and cliques are examples of regular induced subgraphs in a graph. In this paper, we prove that finding a maximum cardinality k-regular induced subgraph is an NP-hard problem for any fixed value of k. We propose a convex quadratic upper bound on the size of a k-regular induced subgraph and characterize those graphs for which this bound is attained. Finally, we extend the Hoffman bound on the size of a maximum 0-regular subgraph (the independence number) from k=0 to larger values of k.  相似文献   

2.
Given an undirected, connected graph G with maximum degree Δ, we introduce the concept of a [1, Δ]-factor k-packing in G, defined as a set of k edge-disjoint subgraphs of G such that every vertex of G has an incident edge in at least one subgraph. The problem of deciding whether a graph admits a [1,Δ]-factor k-packing is shown to be solvable in linear time for k = 2, but NP-complete for all k≥ 3. For k = 2, the optimisation problem of minimising the total number of edges of the subgraphs of the packing is NP-hard even when restricted to subcubic planar graphs, but can in general be approximated within a factor of by reduction to the Maximum 2-Edge-Colorable Subgraph problem. Finally, we discuss implications of the obtained results for the problem of fault-tolerant guarding of a grid, which provides the main motivation for research.  相似文献   

3.
A left vertex weighted convex bipartite graph (LWCBG) is a bipartite graph \(G=(X,Y,E)\) in which the neighbors of each \(x\in X\) form an interval in \(Y\) where \(Y\) is linearly ordered, and each \(x\in X\) has an associated weight. This paper considers the problem of maintaining a maximum weight matching in a dynamic LWCBG. The graph is subject to the updates of vertex and edge insertions and deletions. Our dynamic algorithms maintain the update operations in \(O(\log ^2{|V|})\) amortized time per update, obtain the matching status of a vertex (whether it is matched) in constant worst-case time, and find the pair of a matched vertex (with which it is matched) in worst-case \(O(k)\) time, where \(k\) is not greater than the cardinality of the maximum weight matching. That achieves the same time bound as the best known solution for the problem of the unweighted version.  相似文献   

4.
We study the polyhedron P(G) defined by the convex hull of 2-edge-connected subgraphs of G where multiple copies of edges may be chosen. We show that each vertex of P(G) is also a vertex of the LP relaxation. Given the close relationship with the Graphical Traveling Salesman problem (GTSP), we examine how polyhedral results for GTSP can be modified and applied to P(G). We characterize graphs for which P(G) is integral and study how this relates to a similar result for GTSP. In addition, we show how one can modify some classes of valid inequalities for GTSP and produce new valid inequalities and facets for P(G).  相似文献   

5.
In the map verification problem, a robot is given a (possibly incorrect) map M of the world G with its position and orientation indicated on the map. The task is to find out whether this map, for the given robot position and its orientation in the map, is correct for the world G. We consider the world model of a graph G = (V G, E G) in which, for each vertex, edges incident to the vertex are ordered cyclically around that vertex. (This also holds for the map M = (V M, E M.) The robot can traverse edges and enumerate edges incident on the current vertex, but it cannot distinguish vertices (and edges) from each other. To solve the verification problem, the robot uses a portable edge marker, that it can put down at an edge of the graph world G and pick up later as needed. The robot can recognize the edge marker when it encounters it in the world G. By reducing the verification problem to an exploration problem, verification can be completed in O(|V G| × |E G|) edge traversals (the mechanical cost) with the help of a single vertex marker which can be dropped and picked up at vertices of the graph world (G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, IEEE Trans. on Robotics and Automation, vol. 7, pp. 859–865, 1991; Robotics and Autonomous Systems, vol. 22(2), pp. 159–178, 1997). In this paper, we show a strategy that verifies a map in O(|V M|) edge traversals only, using a single edge marker, when M is a plane embedded graph, even though G may not be planar (e.g., G may contain overpasses, tunnels, etc.).  相似文献   

6.
In this paper, we study the parameterized dominating set problem in chordal graphs. The goal of the problem is to determine whether a given chordal graph G=(V,E) contains a dominating set of size k or not, where k is an integer parameter. We show that the problem is W[1]-hard and it cannot be solved in time unless 3SAT can be solved in subexponential time. In addition, we show that the upper bound of this problem can be improved to when the underlying graph G is an interval graph.  相似文献   

7.
Minimum m-connected k-dominating set problem is as follows: Given a graph G=(V,E) and two natural numbers m and k, find a subset SV of minimal size such that every vertex in VS is adjacent to at least k vertices in S and the induced graph of S is m-connected. In this paper we study this problem with unit disc graphs and small m, which is motivated by the design of fault-tolerant virtual backbone for wireless sensor networks. We propose two approximation algorithms with constant performance ratios for m≤2. We also discuss how to design approximation algorithms for the problem with arbitrarily large m. This work was supported in part by the Research Grants Council of Hong Kong under Grant No. CityU 1165/04E, the National Natural Science Foundation of China under Grant No. 70221001, 10531070 and 10771209.  相似文献   

8.
The problem of interest is covering a given point set with homothetic copies of several convex containers C 1,…,C k , while the objective is to minimize the maximum over the dilatation factors. Such k-containment problems arise in various applications, e.g. in facility location, shape fitting, data classification or clustering. So far most attention has been paid to the special case of the Euclidean k-center problem, where all containers C i are Euclidean unit balls. Recent developments based on so-called core-sets enable not only better theoretical bounds in the running time of approximation algorithms but also improvements in practically solvable input sizes. Here, we present some new geometric inequalities and a Mixed-Integer-Convex-Programming formulation. Both are used in a very effective branch-and-bound routine which not only improves on best known running times in the Euclidean case but also handles general and even different containers among the C i .  相似文献   

9.
We propose the problem of finding broadcast medians in heterogeneous networks. A heterogeneous network is represented by a graph G=(V,E), in which each edge has a weight that denotes the communication time between its two end vertices. The overall delay of a vertex vV(G), denoted as b(v,G), is the minimum sum of the communication time required to send a message from v to all vertices in G. The broadcast median problem consists of finding the set of vertices vV(G) with minimum overall delay b(v,G) and determining the value of b(v,G). In this paper, we consider the broadcast median problem following the heterogeneous postal model. Assuming that the underlying graph G is a general graph, we show that computing b(v,G) for an arbitrary vertex vV(G) is NP-hard. On the other hand, assuming that G is a tree, we propose a linear time algorithm for the broadcast median problem in heterogeneous postal model.  相似文献   

10.
In this paper generalizations of Heilbronn’s triangle problem to convex hulls of j points in the unit square [0,1]2 are considered. By using results on the independence number of linear hypergraphs, for fixed integers k≥3 and any integers nk a deterministic o(n 6k−4) time algorithm is given, which finds distributions of n points in [0,1]2 such that, simultaneously for j=3,…,k, the areas of the convex hulls determined by any j of these n points are Ω((log n)1/(j−2)/n (j−1)/(j−2)).  相似文献   

11.
An approximation algorithm for k-center problem on a convex polygon   总被引:1,自引:1,他引:0  
This paper studies the constrained version of the k-center location problem. Given a convex polygonal region, every point in the region originates a service demand. Our objective is to place k facilities lying on the region’s boundary, such that every point in that region receives service from its closest facility and the maximum service distance is minimized. This problem is equivalent to covering the polygon by k circles with centers on its boundary which have the smallest possible radius. We present an 1.8841-approximation polynomial time algorithm for this problem.  相似文献   

12.
We consider some inverse min-max (or max-min) network problems. Such an inverse problem is to modify the weights with bound constraints so that a given feasible solution becomes an optimal solution of a min-max (or max-min) network problem, and the deviation of the weights, measured by the weighted l 1 norm or weighted l norm, is minimum. In this paper, we present strongly polynomial time algorithms to solve the inverse min-max spanning tree problem and the inverse maximum capacity path problem.  相似文献   

13.
Approximation Algorithms for Bounded Facility Location Problems   总被引:1,自引:0,他引:1  
The bounded k-median problem is to select in an undirected graph G = (V,E) a set S of k vertices such that the distance from any vertex v V to S is at most a given bound d and the average distance from vertices V\S to S is minimized. We present randomized algorithms for several versions of this problem and we prove some inapproximability results. We also study the bounded version of the uncapacitated facility location problem and present extensions of known deterministic algorithms for the unbounded version.  相似文献   

14.
In a graph G, a vertex dominates itself and its neighbors. A subset SeqV(G) is an m-tuple dominating set if S dominates every vertex of G at least m times, and an m-dominating set if S dominates every vertex of GS at least m times. The minimum cardinality of a dominating set is γ, of an m-dominating set is γ m , and of an m-tuple dominating set is mtupledom. For a property π of subsets of V(G), with associated parameter f_π, the k-restricted π-number r k (G,f_π) is the smallest integer r such that given any subset K of (at most) k vertices of G, there exists a π set containing K of (at most) cardinality r. We show that for 1< k < n where n is the order of G: (a) if G has minimum degree m, then r k (G m ) < (mn+k)/(m+1); (b) if G has minimum degree 3, then r k (G,γ) < (3n+5k)/8; and (c) if G is connected with minimum degree at least 2, then r k (G,ddom) < 3n/4 + 2k/7. These bounds are sharp. Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal.  相似文献   

15.
Broadcasting is an information dissemination problem in a connected network, in which one node, called the originator, disseminates a message to all other nodes by placing a series of calls along the communication lines of the network. Finding the broadcast time of a vertex in an arbitrary graph is NP-complete. The polynomial time solvability is shown only for trees. In this paper we present a linear algorithm that determines the broadcast time of any originator in an arbitrary unicyclic graph. As a byproduct, we find a broadcast center of the unicyclic graph. We also present an O(|V|+k 2) algorithm to find the broadcast time of an arbitrary unicyclic graph, where k is the length of the cycle. In the last section we give tight lower and upper bounds on broadcast time of a spanning tree based on the broadcast time of the unicyclic graph. The results of Sects. 2, 3 and most of the proofs in Sects. 2, 3 of this paper are presented by Harutyunyan and Maraachlian (Proceedings of 13th annual COCOON, pp. 372–383, 2007). All results in Sects. 4, 5 and the complete proof of Theorem 3 are new results.  相似文献   

16.
Let k be a positive integer and G=(V,E) be a graph. A vertex subset D of a graph G is called a perfect k-dominating set of G, if every vertex v of G, not in D, is adjacent to exactly k vertices of D. The minimum cardinality of a perfect k-dominating set of G is the perfect k-domination number γ kp (G). In this paper, we give characterizations of graphs for which γ kp (G)=γ(G)+k?2 and prove that the perfect k-domination problem is NP-complete even when restricted to bipartite graphs and chordal graphs. Also, by using dynamic programming techniques, we obtain an algorithm to determine the perfect k-domination number of trees.  相似文献   

17.
Given a simple, undirected graph G=(V,E) and a weight function w:E→ℤ+, we consider the problem of orienting all edges in E so that the maximum weighted outdegree among all vertices is minimized. It has previously been shown that the unweighted version of the problem is solvable in polynomial time while the weighted version is (weakly) NP-hard. In this paper, we strengthen these results as follows: (1) We prove that the weighted version is strongly NP-hard even if all edge weights belong to the set {1,k}, where k is any fixed integer greater than or equal to 2, and that there exists no pseudo-polynomial time approximation algorithm for this problem whose approximation ratio is smaller than (1+1/k) unless P = NP; (2) we present a new polynomial-time algorithm that approximates the general version of the problem within a ratio of (2−1/k), where k is the maximum weight of an edge in G; (3) we show how to approximate the special case in which all edge weights belong to {1,k} within a ratio of 3/2 for k=2 (note that this matches the inapproximability bound above), and (2−2/(k+1)) for any k≥3, respectively, in polynomial time.  相似文献   

18.
This paper addresses the problem of modifying the edge lengths of a tree in minimum total cost such that a prespecified vertex becomes the 1-center of the perturbed tree. This problem is called the inverse 1-center problem on trees. We focus on the problem under Chebyshev norm and Hamming distance. From special properties of the objective functions, we can develop combinatorial algorithms to solve the problem. Precisely, if there does not exist any vertex coinciding with the prespecified vertex during the modification of edge lengths, the problem under Chebyshev norm or bottleneck Hamming distance is solvable in \(O(n\log n)\) time, where \(n+1\) is the number of vertices of the tree. Dropping this condition, the problem can be solved in \(O(n^{2})\) time.  相似文献   

19.
String barcoding is a method that can identify microorganisms by analyzing their genome sequences. In this paper, we study the polylogarithmic string barcoding problem, where the lengths of the substrings in the testing set are polylogarithmically bounded. In particular, we show that the polylogarithmic string barcoding problem remains NP-hard and moreover, for a problem instance with n sequences, it is NP-hard to achieve an approximate ratio within dln n in polynomial time, where d is some constant. We then consider the parameterized polylogarithmic string barcoding problem, where the number of substrings in the test set is considered to be a fixed parameter k. We show that, unless W[2]=FPT, there does not exist a 2 O(k) n c algorithm that can decide whether a test set of size k exists or not, where c is a constant independent of n and k.  相似文献   

20.
In 1984, Gabow and Tarjan provided a very elegant and fast algorithm for the following problem: given a matroid defined on a red and blue colored ground set, determine a basis of minimum cost among those with k red elements, or decide that no such basis exists. In this paper, we investigate extensions of this problem from ordinary matroids to the more general notion of poset matroids which take precedence constraints on the ground set into account. We show that the problem on general poset matroids becomes -hard, already if the underlying partially ordered set (poset) consists of binary trees of height two. On the positive side, we present two algorithms: a pseudopolynomial one for integer polymatroids, i.e., the case where the poset consists of disjoint chains, and a polynomial algorithm for the problem to determine a minimum cost ideal of size l with k red elements, i.e., the uniform rank-l poset matroid, on series-parallel posets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号