共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Stratified pair ranked set sampling is introduced and applied in estimating the population mean. Mathematical properties of the suggested estimator are treated. The estimator and its competitors are also compared through some numerical studies. Usefulness of the proposed design is illustrated using a cost analysis. 相似文献
3.
《Journal of Statistical Computation and Simulation》2012,82(10):1501-1516
In this study, we consider the application of the James–Stein estimator for population means from a class of arbitrary populations based on ranked set sample (RSS). We consider a basis for optimally combining sample information from several data sources. We succinctly develop the asymptotic theory of simultaneous estimation of several means for differing replications based on the well-defined shrinkage principle. We showcase that a shrinkage-type estimator will have, under quadratic loss, a substantial risk reduction relative to the classical estimator based on simple random sample and RSS. Asymptotic distributional quadratic biases and risks of the shrinkage estimators are derived and compared with those of the classical estimator. A simulation study is used to support the asymptotic result. An over-riding theme of this study is that the shrinkage estimation method provides a powerful extension of its traditional counterpart for non-normal populations. Finally, we will use a real data set to illustrate the computation of the proposed estimators. 相似文献
4.
Omer Ozturk 《Revue canadienne de statistique》2008,36(4):577-594
The author proposes inference techniques for ranked set sample data in the presence of judgment ranking errors. He bases his analysis on the models of Bohn & Wolfe (1994) and Frey (2007a, b), of which parameters are estimated by minimizing a distance measure. He then uses the fitted models to calibrate confidence intervals and tests. He shows the validity of his approach through simulation and illustrates its application through the construction of distribution‐free confidence intervals for the median area of apple tree leaves covered by a spray. 相似文献
5.
We study the use of ranked set sampling (RSS) with binary outcomes in cluster-randomized designs (CRDs), where a generalized linear mixed model (GLMM) is used to model the hierarchical data structure involved. Under the GLMM-based framework, we propose three different approaches to estimate the treatment effect, including the nonparametric (NP), maximum likelihood (ML) and pseudo likelihood (PL) estimators. We investigate their asymptotic properties and examine their finite-sample performance via simulation. Based on these three RSS estimators, we further develop procedures for testing the existence of the treatment effect. We examine the power and size of our proposed RSS tests and compare them with existing tests based on simple random sampling (SRS). All the proposed RSS estimation and test methods are illustrated with two data examples, one for rare events and the other for non-extreme events. Throughout our investigations, we also consider the possible effect of imperfect ranking. Among the proposed methods, we provide recommendations on whether to use RSS rather than SRS with binary outcomes in CRDs and, if yes, when to use which RSS method. The Canadian Journal of Statistics 48: 342–365; 2020 © 2019 Statistical Society of Canada 相似文献
6.
In this paper we consider the problem of estimating the reliability of an exponential component based on a Ranked Set Sample (RSS) of size n. Given the first r observations of that sample, 1≤r≤n, we construct an unbiased estimator for this reliability and we show that these n unbiased estimators are the only ones in a certain class of estimators. The variances of some of these estimators are compared. By viewing the observations of the RSS of size n as the lifetimes of n independent k-out-of-n systems, 1≤k≤n, we are able to utilize known properties of these systems in conjunction with the powerful tools of majorization and Schur functions to derive our results. 相似文献
7.
《Journal of Statistical Computation and Simulation》2012,82(7):761-774
When measuring units are expensive or time consuming, while ranking them is relatively easy and inexpensive, it is known that ranked set sampling (RSS) is preferable to simple random sampling (SRS). Many authors have suggested several extensions of RSS. As a variation, Al-Saleh and Al-Kadiri [Double ranked set sampling, Statist. Probab. Lett. 48 (2000), pp. 205–212] introduced double ranked set sampling (DRSS) and it was extended by Al-Saleh and Al-Omari [Multistage ranked set sampling, J. Statist. Plann. Inference 102 (2002), pp. 273–286] to multistage ranked set sampling (MSRSS). The entropy of a random variable (r.v.) is a measure of its uncertainty. It is a measure of the amount of information required on the average to determine the value of a (discrete) r.v.. In this work, we discuss entropy estimation in RSS design and aforementioned extensions and compare the results with those in SRS design in terms of bias and root mean square error (RMSE). Motivated by the above observed efficiency, we continue to investigate entropy-based goodness-of-fit test for the inverse Gaussian distribution using RSS. Critical values for some sample sizes determined by means of Monte Carlo simulations are presented for each design. A Monte Carlo power analysis is performed under various alternative hypotheses in order to compare the proposed testing procedure with the existing methods. The results indicate that tests based on RSS and its extensions are superior alternatives to the entropy test based on SRS. 相似文献
8.
《Journal of Statistical Computation and Simulation》2012,82(11):1185-1196
In this article, we consider the median ranked set sampling estimation and test of hypothesis for the mean for symmetric distributions. We suggest some alternative estimation strategies for parameters based on shrinkage and pretest principles. It is advantageous to use the non-sample information in the estimation process to construct alternative estimations for the parameter of interest. In this article, large sample properties of the suggested estimators will be assessed numerically using computer simulation. The relative performance of the suggested estimators for moderate and large samples will also be simulated. For illustration purposes, the proposed methodology is applied using data collocated from the Pepsi Cola production company in Al-Khobar, Saudi Arabia. 相似文献
9.
Ranked set sampling is a sampling approach that leads to improved statistical inference in situations where the units to be sampled can be ranked relative to each other prior to formal measurement. This ranking may be done either by subjective judgment or according to an auxiliary variable, and it need not be completely accurate. In fact, results in the literature have shown that no matter how poor the quality of the ranking, procedures based on ranked set sampling tend to be at least as efficient as procedures based on simple random sampling. However, efforts to quantify the gains in efficiency for ranked set sampling procedures have been hampered by a shortage of available models for imperfect rankings. In this paper, we introduce a new class of models for imperfect rankings, and we provide a rigorous proof that essentially any reasonable model for imperfect rankings is a limit of models in this class. We then describe a specific, easily applied method for selecting an appropriate imperfect rankings model from the class. 相似文献
10.
In this paper, we consider the problem of estimating the population proportion in pair ranked set sampling design. An unbiased estimator for the population proportion is proposed, and its theoretical properties are studied. It is shown that the estimator is more (less) efficient than its counterpart in simple random sampling (ranked set sampling). Asymptotic normality of the estimator is also established. Application of the suggested procedure is illustrated using a data set from an environmental study. 相似文献
11.
Cesar Augusto Taconeli Angelo da Silva Cabral 《Journal of Statistical Computation and Simulation》2019,89(2):232-248
Neoteric ranked set sampling (NRSS) is a recently developed sampling plan, derived from the well-known ranked set sampling (RSS) scheme. It has already been proved that NRSS provides more efficient estimators for population mean and variance compared to RSS and other sampling designs based on ranked sets. In this work, we propose and evaluate the performance of some two-stage sampling designs based on NRSS. Five different sampling schemes are proposed. Through an extensive Monte Carlo simulation study, we verified that all proposed sampling designs outperform RSS, NRSS, and the original double RSS design, producing estimators for the population mean with a lower mean square error. Furthermore, as with NRSS, two-stage NRSS estimators present some bias for asymmetric distributions. We complement the study with a discussion on the relative performance of the proposed estimators. Moreover, an additional simulation based on data of the diameter and height of pine trees is presented. 相似文献
12.
Büşra Sevinç Selma Gürler Bekir Çetintav 《Journal of Statistical Computation and Simulation》2018,88(14):2799-2810
Ranked set sampling (RSS) is an advanced sampling method which is very effective for estimating mean of the population when exact measurement of observation is difficult and/or expensive. Balanced Groups RSS (BGRSS) is one of the modification of RSS where only the lowest, the median and the largest ranked units are taken into account. Although BGRSS is advantageous and useful for some specific cases, it has strict restrictions regarding the set size which could be problematic for sampling plans. In this study, we make an improvement on BGRSS and propose a new design called Partial Groups RSS which offers a more flexible sampling plan providing the independence of the set size and sample size. Partial Groups RSS also has a cost advantage over BGRSS. We construct a Monte Carlo simulation study comparing the performance of the mean estimators of the proposed sampling design and BGRSS according to their sampling costs and mean squared errors for various type of distributions. In addition, we give a biometric data application for investigating the efficiency of Partial Groups RSS in real life applications. 相似文献
13.
The problems of estimating the reliability function and P=PrX > Y are considered for the generalized life distributions. Uniformly minimum variance unbiased estimators (UMVUES) of the
powers of the parameter involved in the probabilistic model and the probability density function (pdf) at a specified point
are derived. The UMVUE of the pdf is utilized to obtain the UMVUE of the reliability function and ‘P’. Our method of obtaining
these estimators is quite simple than the traditional approaches. A theoretical method of studying the behaviour of the hazard-rate
is provided. 相似文献
14.
Many methods based on ranked set sampling (RSS) assume perfect ranking of the samples. Here, by using the data measured by a balanced RSS scheme, we propose a nonparametric test for the assumption of perfect ranking. The test statistic that we use formally corresponds to the Jonckheere-Terpstra-type test statistic. We show formal relations of the proposed test for perfect ranking to other methods proposed recently in the literature. Through an empirical power study, we demonstrate that the proposed method performs favorably compared to many of its competitors. 相似文献
15.
16.
This article is concerned with nonparametric estimation of the entropy in ranked set sampling. Theoretical properties of the proposed estimator are studied. The proposed estimator is compared with the rival estimator in simple random sampling. The applications of the proposed estimator to the mutual information estimation as well as estimation of the Kullback–Leibler divergence are provided. Several Monté-Carlo simulation studies are conducted to examine the performance of the estimator. The results are applied to the longleaf pine (Pinus palustris) trees and the body fat percentage datasets to illustrate applicability of theoretical results. 相似文献
17.
Omer Ozturk 《Journal of statistical planning and inference》2011,141(4):1616-1622
This paper develops parametric inference for the parameters of location-scale family of distributions based on a ranked set sample. Likelihood function incorporates within-set ranking errors into the model through a missing data mechanism. The maximum likelihood estimators of the location-scale and missing data model parameters are constructed and an EM-algorithm is provided. It is shown that the proposed estimator is robust against imperfect ranking error and provides higher efficiency over its competitors. 相似文献
18.
A lot of research on ranked set sampling (RSS) is based on the assumption that the ranking is perfect. Hence, it is necessary to develop some tests that could be used to validate this assumption of perfect ranking. In this paper, we introduce some simple nonparametric methods for this purpose. We specifically define three test statistics, Nk,Sk and Ak, based on one-cycle RSS, which are all associated with the ordered ranked set sample (ORSS). We then derive the exact null distributions and exact power functions of all these tests. Next, by using the sum or the maximum of each statistic over all cycles, we propose six test statistics for the case of multi-cycle RSS. We compare the performance of all these tests with that of the Kolmogorov–Smirnov test statistic proposed earlier by Stokes and Sager [1988. Characterization of a ranked-set sample with application to estimating distribution functions. J. Amer. Statist. Assoc. 83, 35–42] and display that all proposed test statistics are more powerful. Finally, we present an example to illustrate the test procedures discussed here. 相似文献
19.
The MG-procedure in ranked set sampling is studied in this paper. It is shown that the MG-procedure with any selective probability matrix provides a more efficient estimator than the sample mean based on simple random sampling. The optimum selective probability matrix in the procedure is obtained and the estimator based on it is shown to be more efficient than that studied by Yanagawa and Shirahata [5]. The median-mean estimator, which is more efficient and could be easier to apply than that proposed by McIntyre [2] and Takahashi and Wakinoto [3], is proposed when the underlying distribution function belongs to a certain subfamily of symmetric distribution functions which includes the normal, logistic and double exponential distributions among others. 相似文献
20.
Abdul Haq 《Journal of Statistical Computation and Simulation》2017,87(2):313-327
Recently, a hybrid ranked set sampling (HRSS) scheme has been proposed in the literature. The HRSS scheme encompasses several existing ranked set sampling (RSS) schemes, and it is a cost-effective alternative to the classical RSS and double RSS schemes. In this paper, we propose an improved estimator for estimating the cumulative distribution function (CDF) using HRSS. It is shown, both theoretically and numerically, that the CDF estimator under HRSS scheme is unbiased and its variance is always less than the variance of the CDF estimator with simple random sampling (SRS). An unbiased estimator of the variance of CDF estimator using HRSS is also derived. Using Monte Carlo simulations, we also study the performances of the proposed and existing CDF estimators under both perfect and imperfect rankings. It turns out that the proposed CDF estimator is by far a superior alternative to the existing CDF estimators with SRS, RSS and L-RSS schemes. For a practical application, a real data set is considered on the bilirubin level of babies in neonatal intensive care. 相似文献