首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article extends the linear stochastic frontier model proposed by Aigner, Lovell, and Schmidt to a semiparametric frontier model in which the functional form of the production frontier is unspecified and the distributions of the composite error terms are of known form. Pseudolikelihood estimators of the parameters characterizing the two error terms of the model are constructed based on kernel estimation of the conditional mean function. The Monte Carlo results show that the proposed estimators perform well in finite samples. An empirical application is presented. Extensions to a partially linear frontier function and to more flexible one-sided error distributions than the half-normal are discussed  相似文献   

2.
Approximate conditional inference is developed for the slope parameter of the linear functional model with two variables. It is shown that the model can be transformed so that the slope parameter becomes an angle and nuisance parameters are radial distances. If the nuisance parameters are known an exact confidence interval based on a location-type conditional distribution is available for the angle. More gen¬erally, confidence distributions are used to average the conditional distribution over the nuisance parameters yielding an approximate conditional confidence interval that reflects the precision indicated by the data. An example is analyzed.  相似文献   

3.
Log‐normal linear regression models are popular in many fields of research. Bayesian estimation of the conditional mean of the dependent variable is problematic as many choices of the prior for the variance (on the log‐scale) lead to posterior distributions with no finite moments. We propose a generalized inverse Gaussian prior for this variance and derive the conditions on the prior parameters that yield posterior distributions of the conditional mean of the dependent variable with finite moments up to a pre‐specified order. The conditions depend on one of the three parameters of the suggested prior; the other two have an influence on inferences for small and medium sample sizes. A second goal of this paper is to discuss how to choose these parameters according to different criteria including the optimization of frequentist properties of posterior means.  相似文献   

4.
A novel approach to quantile estimation in multivariate linear regression models with change-points is proposed: the change-point detection and the model estimation are both performed automatically, by adopting either the quantile-fused penalty or the adaptive version of the quantile-fused penalty. These two methods combine the idea of the check function used for the quantile estimation and the L1 penalization principle known from the signal processing and, unlike some standard approaches, the presented methods go beyond typical assumptions usually required for the model errors, such as sub-Gaussian or normal distribution. They can effectively handle heavy-tailed random error distributions, and, in general, they offer a more complex view on the data as one can obtain any conditional quantile of the target distribution, not just the conditional mean. The consistency of detection is proved and proper convergence rates for the parameter estimates are derived. The empirical performance is investigated via an extensive comparative simulation study and practical utilization is demonstrated using a real data example.  相似文献   

5.
In observational studies for the interaction between exposures on a dichotomous outcome of a certain population, usually one parameter of a regression model is used to describe the interaction, leading to one measure of the interaction. In this article we use the conditional risk of an outcome given exposures and covariates to describe the interaction and obtain five different measures of the interaction, that is, difference between the marginal risk differences, ratio of the marginal risk ratios, ratio of the marginal odds ratios, ratio of the conditional risk ratios, and ratio of the conditional odds ratios. These measures reflect different aspects of the interaction. By using only one regression model for the conditional risk, we obtain the maximum-likelihood (ML)-based point and interval estimates of these measures, which are most efficient due to the nature of ML. We use the ML estimates of the model parameters to obtain the ML estimates of these measures. We use the approximate normal distribution of the ML estimates of the model parameters to obtain approximate non-normal distributions of the ML estimates of these measures and then confidence intervals of these measures. The method can be easily implemented and is presented via a medical example.  相似文献   

6.
Maximum-likelihood estimation is interpreted as a procedure for generating approximate pivotal quantities, that is, functions u(X;θ) of the data X and parameter θ that have distributions not involving θ. Further, these pivotals should be efficient in the sense of reproducing approximately the likelihood function of θ based on X, and they should be approximately linear in θ. To this end the effect of replacing θ by a parameter ϕ = ϕ(θ) is examined. The relationship of maximum-likelihood estimation interpreted in this way to conditional inference is discussed. Examples illustrating this use of maximum-likelihood estimation on small samples are given.  相似文献   

7.
Some test statistics for the structural coefficients of simultaneous equations model often referred to as the multivariate linear functional relationship model are proposed in this article. The following cases are considered: the covariance matrix of errors is either unknown, known up to a proportionality factor, or completely known. The exact and approximate distributions of the proposed test statistics, as well as those of some that are known, are also given.  相似文献   

8.
In treating dynamic systems, sequential Monte Carlo methods use discrete samples to represent a complicated probability distribution and use rejection sampling, importance sampling and weighted resampling to complete the on-line 'filtering' task. We propose a special sequential Monte Carlo method, the mixture Kalman filter, which uses a random mixture of the Gaussian distributions to approximate a target distribution. It is designed for on-line estimation and prediction of conditional and partial conditional dynamic linear models, which are themselves a class of widely used non-linear systems and also serve to approximate many others. Compared with a few available filtering methods including Monte Carlo methods, the gain in efficiency that is provided by the mixture Kalman filter can be very substantial. Another contribution of the paper is the formulation of many non-linear systems into conditional or partial conditional linear form, to which the mixture Kalman filter can be applied. Examples in target tracking and digital communications are given to demonstrate the procedures proposed.  相似文献   

9.
Multiplier bootstrap methods for conditional distributions   总被引:1,自引:0,他引:1  
The multiplier bootstrap is a fast and easy-to-implement alternative to the standard bootstrap; it has been used successfully in many statistical contexts. In this paper, resampling methods based on multipliers are proposed in a general framework where one investigates the stochastic behavior of a random vector \(\mathbf {Y}\in \mathbb {R}^d\) conditional on a covariate \(X \in \mathbb {R}\). Specifically, two versions of the multiplier bootstrap adapted to empirical conditional distributions are introduced as alternatives to the conditional bootstrap and their asymptotic validity is formally established. As the method walks hand-in-hand with the functional delta method, theory around the estimation of statistical functionals is developed accordingly; this includes the interval estimation of conditional mean and variance, conditional correlation coefficient, Kendall’s dependence measure and copula. Composite inference about univariate and joint conditional distributions is also considered. The sample behavior of the new bootstrap schemes and related estimation methods are investigated via simulations and an illustration on real data is provided.  相似文献   

10.
Dependency networks (DNs) have been receiving more attention recently because their structures and parameters can be easily learned from data. The full conditional distributions (FCDs) are known conditions of DNs. Gibbs sampling is currently the most popular inference method on DNs. However, sampling methods converge slowly and it can be hard to diagnose their convergence. In this article, we introduce a set of linear equations to describe the relations between joint probability distributions (JPDs) and FCDs. These equations provide a novel perspective to understand reasoning on DNs. Based on these linear equations, we develop both exact and approximate algorithms for inference on DNs. Experiments show that the proposed approximate algorithms can produce effective results by maintaining low computational complexity.  相似文献   

11.
Exact and approximate Bayesian inference is developed for the prediction problem in finite populations under a linear functional superpopulation model. The models considered are the usual regression models involving two variables, X and Y, where the independent variable X is measured with error. The approach is based on the conditional distribution of Y given X and our predictor is the posterior mean of the quantity of interest (population total and population variance) given the observed data. Empirical investigations about optimal purposive samples and possible model misspecifications based on comparisons with the corresponding models where X is measured without error are also reported.  相似文献   

12.
The paper considers the impact on estimation and inference of interactions between the existence of unit roots in a data generation process and the presence or absence of weak and strong exogeneity of conditioning variables for the parameters of interest in individual cointegrated linear relationships. The asymptotic distributions of estimators for single equation conditional linear relations are analyzed in conjunction with a Monte Carlo study. The results confirm the important role of weak exogeneity in single equation estimation from integratedcointegrated data; highlight the advantages of using an asymptotic analysis to understand the complicated interactions observed; and reveal the accuracy of the limiting distributions in characterizing finite sample behaviour.  相似文献   

13.
In this work, we develop modeling and estimation approach for the analysis of cross-sectional clustered data with multimodal conditional distributions where the main interest is in analysis of subpopulations. It is proposed to model such data in a hierarchical model with conditional distributions viewed as finite mixtures of normal components. With a large number of observations in the lowest level clusters, a two-stage estimation approach is used. In the first stage, the normal mixture parameters in each lowest level cluster are estimated using robust methods. Robust alternatives to the maximum likelihood estimation are used to provide stable results even for data with conditional distributions such that their components may not quite meet normality assumptions. Then the lowest level cluster-specific means and standard deviations are modeled in a mixed effects model in the second stage. A small simulation study was conducted to compare performance of finite normal mixture population parameter estimates based on robust and maximum likelihood estimation in stage 1. The proposed modeling approach is illustrated through the analysis of mice tendon fibril diameters data. Analyses results address genotype differences between corresponding components in the mixtures and demonstrate advantages of robust estimation in stage 1.  相似文献   

14.
The paper considers the impact on estimation and inference of interactions between the existence of unit roots in a data generation process and the presence or absence of weak and strong exogeneity of conditioning variables for the parameters of interest in individual cointegrated linear relationships. The asymptotic distributions of estimators for single equation conditional linear relations are analyzed in conjunction with a Monte Carlo study. The results confirm the important role of weak exogeneity in single equation estimation from integratedcointegrated data; highlight the advantages of using an asymptotic analysis to understand the complicated interactions observed; and reveal the accuracy of the limiting distributions in characterizing finite sample behaviour.  相似文献   

15.
It has been found that, for a variety of probability distributions, there is a surprising linear relation between mode, mean, and median. In this article, the relation between mode, mean, and median regression functions is assumed to follow a simple parametric model. We propose a semiparametric conditional mode (mode regression) estimation for an unknown (unimodal) conditional distribution function in the context of regression model, so that any m-step-ahead mean and median forecasts can then be substituted into the resultant model to deliver m-step-ahead mode prediction. In the semiparametric model, Least Squared Estimator (LSEs) for the model parameters and the simultaneous estimation of the unknown mean and median regression functions by the local linear kernel method are combined to infer about the parametric and nonparametric components of the proposed model. The asymptotic normality of these estimators is derived, and the asymptotic distribution of the parameter estimates is also given and is shown to follow usual parametric rates in spite of the presence of the nonparametric component in the model. These results are applied to obtain a data-based test for the dependence of mode regression over mean and median regression under a regression model.  相似文献   

16.
This paper investigates the roles of partial correlation and conditional correlation as measures of the conditional independence of two random variables. It first establishes a sufficient condition for the coincidence of the partial correlation with the conditional correlation. The condition is satisfied not only for multivariate normal but also for elliptical, multivariate hypergeometric, multivariate negative hypergeometric, multinomial and Dirichlet distributions. Such families of distributions are characterized by a semigroup property as a parametric family of distributions. A necessary and sufficient condition for the coincidence of the partial covariance with the conditional covariance is also derived. However, a known family of multivariate distributions which satisfies this condition cannot be found, except for the multivariate normal. The paper also shows that conditional independence has no close ties with zero partial correlation except in the case of the multivariate normal distribution; it has rather close ties to the zero conditional correlation. It shows that the equivalence between zero conditional covariance and conditional independence for normal variables is retained by any monotone transformation of each variable. The results suggest that care must be taken when using such correlations as measures of conditional independence unless the joint distribution is known to be normal. Otherwise a new concept of conditional independence may need to be introduced in place of conditional independence through zero conditional correlation or other statistics.  相似文献   

17.
Quantile regression can provide more useful information on the conditional distribution of a response variable given covariates while classical regression provides informations on the conditional mean alone. In this paper, we propose a structured quantile estimation methodology in a nonparametric function estimation setup. Through the functional analysis of variance decomposition, the optimization of the proposed method can be solved using a series of quadratic and linear programmings. Our method automatically selects relevant covariates by adopting a lasso-type penalty. The performance of the proposed methodology is illustrated through numerical examples on both simulated and real data.  相似文献   

18.
Considering exponential families of distributions, we estimate parameters which are not the natural parameters. We prove that the admissible estimators of these parameters are limits of Bayes estimators and can be expressed through a given functional form. An important particular case of this model pertains to the estimation of the mean of a multidimensional normal distribution when the variance is known up to a multiplicative factor. We deduce from the main result a necessry condition for the admissibility of matricial shrinkage estimators.  相似文献   

19.
The linear discriminant function (LDF) is known to be optimal in the sense of achieving an optimal error rate when sampling from multivariate normal populations with equal covariance matrices. Use of the LDF in nonnormal situations is known to lead to some strange results. This paper will focus on an evaluation of misclassification probabilities when the power transformation could have been used to achieve at least approximate normality and equal covariance matrices in the sampled populations for the distribution of the observed random variables. Attention is restricted to the two-population case with bivariate distributions.  相似文献   

20.
This paper introduces some robust estimation procedures to estimate quantiles of a continuous random variable based on data, without any other assumptions of probability distribution. We construct a reasonable linear regression model to connect the relationship between a suitable symmetric data transformation and the approximate standard normal statistics. Statistical properties of this linear regression model and its applications are studied, including estimators of quantiles, quartile mean, quartile deviation, correlation coefficient of quantiles and standard errors of these estimators. We give some empirical examples to illustrate the statistical properties and apply our estimators to grouping data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号