首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper compares minimum distance estimation with best linear unbiased estimation to determine which technique provides the most accurate estimates for location and scale parameters as applied to the three parameter Pareto distribution. Two minimum distance estimators are developed for each of the three distance measures used (Kolmogorov, Cramer‐von Mises, and Anderson‐Darling) resulting in six new estimators. For a given sample size 6 or 18 and shape parameter 1(1)4, the location and scale parameters are estimated. A Monte Carlo technique is used to generate the sample sets. The best linear unbiased estimator and the six minimum distance estimators provide parameter estimates based on each sample set. These estimates are compared using mean square error as the evaluation tool. Results show that the best linear unbaised estimator provided more accurate estimates of location and scale than did the minimum estimators tested.  相似文献   

2.
Most of the long memory estimators for stationary fractionally integrated time series models are known to experience non‐negligible bias in small and finite samples. Simple moment estimators are also vulnerable to such bias, but can easily be corrected. In this article, the authors propose bias reduction methods for a lag‐one sample autocorrelation‐based moment estimator. In order to reduce the bias of the moment estimator, the authors explicitly obtain the exact bias of lag‐one sample autocorrelation up to the order n−1. An example where the exact first‐order bias can be noticeably more accurate than its asymptotic counterpart, even for large samples, is presented. The authors show via a simulation study that the proposed methods are promising and effective in reducing the bias of the moment estimator with minimal variance inflation. The proposed methods are applied to the northern hemisphere data. The Canadian Journal of Statistics 37: 476–493; 2009 © 2009 Statistical Society of Canada  相似文献   

3.
Two‐stage designs are widely used to determine whether a clinical trial should be terminated early. In such trials, a maximum likelihood estimate is often adopted to describe the difference in efficacy between the experimental and reference treatments; however, this method is known to display conditional bias. To reduce such bias, a conditional mean‐adjusted estimator (CMAE) has been proposed, although the remaining bias may be nonnegligible when a trial is stopped for efficacy at the interim analysis. We propose a new estimator for adjusting the conditional bias of the treatment effect by extending the idea of the CMAE. This estimator is calculated by weighting the maximum likelihood estimate obtained at the interim analysis and the effect size prespecified when calculating the sample size. We evaluate the performance of the proposed estimator through analytical and simulation studies in various settings in which a trial is stopped for efficacy or futility at the interim analysis. We find that the conditional bias of the proposed estimator is smaller than that of the CMAE when the information time at the interim analysis is small. In addition, the mean‐squared error of the proposed estimator is also smaller than that of the CMAE. In conclusion, we recommend the use of the proposed estimator for trials that are terminated early for efficacy or futility.  相似文献   

4.
A robust estimator is developed for the location and scale parameters of a location-scale family. The estimator is defined as the minimizer of a minimum distance function that measures the distance between the ranked set sample empirical cumulative distribution function and a possibly misspecified target model. We show that the estimator is asymptotically normal, robust, and has high efficiency with respect to its competitors in literature. It is also shown that the location estimator is consistent within the class of all symmetric distributions whereas the scale estimator is Fisher consistent at the true target model. The paper also considers an optimal allocation procedure that does not introduce any bias due to judgment error classification. It is shown that this allocation procedure is equivalent to Neyman allocation. A numerical efficiency comparison is provided.  相似文献   

5.
The Maximum Likelihood (ML) and Best Linear Unbiased (BLU) estimators of the location and scale parameters of an extreme value distribution (Lawless [1982]) are compared under conditions of small sample sizes and Type I censorship. The comparisons were made in terms of the mean square error criterion. According to this criterion, the ML estimator of σ in the case of very small sample sizes (n < 10) and heavy censorship (low censoring time) proved to be more efficient than the corresponding BLU estimator. However, the BLU estimator for σ attains parity with the corresponding ML estimator when the censoring time increases even for sample sizes as low as 10. The BLU estimator of σ attains equivalence with the ML estimator when the sample size increases above 10, particularly when the censoring time is also increased. The situation is reversed when it came to estimating the location parameter μ, as the BLU estimator was found to be consistently more efficient than the ML estimator despite the improved performance of the ML estimator when the sample size increases. However, computational ease and convenience favor the ML estimators.  相似文献   

6.
The bias bound function of an estimator is an important quantity in order to perform globally robust inference. We show how to evaluate the exact bias bound for the minimax estimator of the location parameter for a wide class of unimodal symmetric location and scale family. We show, by an example, how to obtain an upper bound of the bias bound for a unimodal asymmetric location and scale family. We provide the exact bias bound of the minimum distance/disparity estimators under a contamination neighborhood generated from the same distance.  相似文献   

7.
The presence of a nuisance parameter may often perturb the quality of the likelihood-based inference for a parameter of interest under small to moderate sample sizes. The article proposes a maximal scale invariant transformation for likelihood-based inference for the shape in a shape-scale family to circumvent the effect of the nuisance scale parameter. The transformation can be used under complete or type-II censored samples. Simulation-based performance evaluation of the proposed estimator for the popular Weibull, Gamma and Generalized exponential distribution exhibits markedly improved performance in all types of likelihood-based inference for the shape under complete and type-II censored samples. The simulation study leads to a linear relation between the bias of the classical maximum likelihood estimator (MLE) and the transformation-based MLE for the popular Weibull and Gamma distributions. The linearity is exploited to suggest an almost unbiased estimator of the shape parameter for these distributions. Allied estimation of scale is also discussed.  相似文献   

8.
Two‐stage design is very useful in clinical trials for evaluating the validity of a specific treatment regimen. When the second stage is allowed to continue, the method used to estimate the response rate based on the results of both stages is critical for the subsequent design. The often‐used sample proportion has an evident upward bias. However, the maximum likelihood estimator or the moment estimator tends to underestimate the response rate. A mean‐square error weighted estimator is considered here; its performance is thoroughly investigated via Simon's optimal and minimax designs and Shuster's design. Compared with the sample proportion, the proposed method has a smaller bias, and compared with the maximum likelihood estimator, the proposed method has a smaller mean‐square error. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Unobservable individual effects in models of duration will cause estimation bias that include the structural parameters as well as the duration dependence. The maximum penalized likelihood estimator is examined as an estimator for the survivor model with heterogeneity. Proofs of the existence and uniqueness of the maximum penalized likelihood estimator in duration model with general forms of unobserved heterogeneity are provided. Some small sample evidence on the behavior of the maximum penalized likelihood estimator is given. The maximum penalized likelihood estimator is shown to be computationally feasible and to provide reasonable estimates in most cases.  相似文献   

10.
We study robustness properties of two types of M-estimators of scale when both location and scale parameters are unknown: (i) the scale estimator arising from simultaneous M-estimation of location and scale; and (ii) its symmetrization about the sample median. The robustness criteria considered are maximal asymptotic bias and maximal asymptotic variance when the known symmetric unimodal error distribution is subject to unknown, possibly asymmetric, £-con-tamination. Influence functions and asymptotic variance functionals are derived, and computations of asymptotic biases and variances, under the normal distribution with ε-contamination at oo, are presented for the special subclass arising from Huber's Proposal 2 and its symmetrized version. Symmetrization is seen to reduce both asymptotic bias and variance. Some complementary theoretical results are obtained, and the tradeoff between asymptotic bias and variance is discussed.  相似文献   

11.
We propose the total bootstrap median (TBM) as a robust and efficient estimator of location and scale for small samples. We demonstrate its performance by estimating the mean and variance of a variety of distributions. We also show that, if the underlying distribution is unknown and there is either no contamination or low to moderate contamination, the TBM provides a better estimate of the mean, in mean square terms, than the sample mean or the sample median. In addition, the TBM is a better estimator of the variance of the underlying distribution than the sample variance or the square of the bias-corrected median absolute deviation from the median estimator. We also show that the TBM is an explicit L-estimator, which allows a direct study of its properties.  相似文献   

12.
A particular concerns of researchers in statistical inference is bias in parameters estimation. Maximum likelihood estimators are often biased and for small sample size, the first order bias of them can be large and so it may influence the efficiency of the estimator. There are different methods for reduction of this bias. In this paper, we proposed a modified maximum likelihood estimator for the shape parameter of two popular skew distributions, namely skew-normal and skew-t, by offering a new method. We show that this estimator has lower asymptotic bias than the maximum likelihood estimator and is more efficient than those based on the existing methods.  相似文献   

13.
We examine the finite sample properties of the maximum likelihood estimator for the binary logit model with random covariates. Previous studies have either relied on large-sample asymptotics or have assumed non-random covariates. Analytic expressions for the first-order bias and second-order mean squared error function for the maximum likelihood estimator in this model are derived, and we undertake numerical evaluations to illustrate these analytic results for the single covariate case. For various data distributions, the bias of the estimator is signed the same as the covariate’s coefficient, and both the absolute bias and the mean squared errors increase symmetrically with the absolute value of that parameter. The behaviour of a bias-adjusted maximum likelihood estimator, constructed by subtracting the (maximum likelihood) estimator of the first-order bias from the original estimator, is examined in a Monte Carlo experiment. This bias-correction is effective in all of the cases considered, and is recommended for use when this logit model is estimated by maximum likelihood using small samples.  相似文献   

14.
The authors consider a robust linear discriminant function based on high breakdown location and covariance matrix estimators. They derive influence functions for the estimators of the parameters of the discriminant function and for the associated classification error. The most B‐robust estimator is determined within the class of multivariate S‐estimators. This estimator, which minimizes the maximal influence that an outlier can have on the classification error, is also the most B‐robust location S‐estimator. A comparison of the most B‐robust estimator with the more familiar biweight S‐estimator is made.  相似文献   

15.
The performances of data-driven bandwidth selection procedures in local polynomial regression are investigated by using asymptotic methods and simulation. The bandwidth selection procedures considered are based on minimizing 'prelimit' approximations to the (conditional) mean-squared error (MSE) when the MSE is considered as a function of the bandwidth h . We first consider approximations to the MSE that are based on Taylor expansions around h=0 of the bias part of the MSE. These approximations lead to estimators of the MSE that are accurate only for small bandwidths h . We also consider a bias estimator which instead of using small h approximations to bias naïvely estimates bias as the difference of two local polynomial estimators of different order and we show that this estimator performs well only for moderate to large h . We next define a hybrid bias estimator which equals the Taylor-expansion-based estimator for small h and the difference estimator for moderate to large h . We find that the MSE estimator based on this hybrid bias estimator leads to a bandwidth selection procedure with good asymptotic and, for our Monte Carlo examples, finite sample properties.  相似文献   

16.
A regression model is considered in which the response variable has a type 1 extreme-value distribution for smallest values. Bias approximations for the maximum likelihood estimators are pivm and a bias reduction estimator for the scale parameter is proposed. The small sample moment properties of the maximum likelihood estimators are compared with the properties of the ordinary least squares estimators and the best linear unbiased estimators based on order statistics for grouped data.  相似文献   

17.
We derive analytic expressions for the biases of the maximum likelihood estimators of the scale parameter in the half-logistic distribution with known location, and of the location parameter when the latter is unknown. Using these expressions to bias-correct the estimators is highly effective, without adverse consequences for estimation mean squared error. The overall performance of the first of these bias-corrected estimators is slightly better than that of a bootstrap bias-corrected estimator. The bias-corrected estimator of the location parameter significantly out-performs its bootstrapped-based counterpart. Taking computational costs into account, the analytic bias corrections clearly dominate the use of the bootstrap.  相似文献   

18.
Abstract. Two simple and frequently used capture–recapture estimates of the population size are compared: Chao's lower‐bound estimate and Zelterman's estimate allowing for contaminated distributions. In the Poisson case it is shown that if there are only counts of ones and twos, the estimator of Zelterman is always bounded above by Chao's estimator. If counts larger than two exist, the estimator of Zelterman is becoming larger than that of Chao's, if only the ratio of the frequencies of counts of twos and ones is small enough. A similar analysis is provided for the binomial case. For a two‐component mixture of Poisson distributions the asymptotic bias of both estimators is derived and it is shown that the Zelterman estimator can experience large overestimation bias. A modified Zelterman estimator is suggested and also the bias‐corrected version of Chao's estimator is considered. All four estimators are compared in a simulation study.  相似文献   

19.
Abstract

It is known that due to the existence of the nonparametric component, the usual estimators for the parametric component or its function in partially linear regression models are biased. Sometimes this bias is severe. To reduce the bias, we propose two jackknife estimators and compare them with the naive estimator. All three estimators are shown to be asymptotically equivalent and asymptotically normally distributed under some regularity conditions. However, through simulation we demonstrate that the jackknife estimators perform better than the naive estimator in terms of bias when the sample size is small to moderate. To make our results more useful, we also construct consistent estimators of the asymptotic variance, which are robust against heterogeneity of the error variances.  相似文献   

20.
The simple linear regression model with measurement error has been subject to much research. In this work we will focus on this model when the error in the explanatory variable is correlated with the error in the regression equation. Specifically, we are interested in the comparison between the ordinary errors-in-variables estimator of the regression coefficient ββ and the estimator that takes account of the correlation between the errors. Based on large sample approximations, we compare the estimators and find that the estimator that takes account of the correlation should be preferred in most situations. We also compare the estimators in small sample situations. This is done by stochastic simulation. The results show that the estimators behave quite similarly in most of the simulated situations, but that the ordinary errors-in-variables estimator performs considerably worse than the estimator that takes account of the correlation for certain parameter combinations. In addition, we look briefly into the bias introduced by ignoring correlated errors when computing sample correlations, and in predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号