首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We propose a variables repetitive group sampling plan under type-II or failure-censored life testing when the lifetime of a part follows a Weibull distribution with a known shape parameter. The acceptance criteria do not involve unknown scale parameter differently from the existing plans. To determine the design parameters of the proposed plan, the usual approach of using two points on the operating characteristic curve is adopted and an optimization problem is formulated so as to minimize the average number of failures observed. Tables for design parameters are constructed when the quality of parts is represented by the unreliability or the ratio of the mean lifetime to the specified life. It is found that the proposed sampling plan can reduce the sample size significantly than do the single sampling plan.  相似文献   

2.
This article provides a simple expression of the Fisher information matrix about the unknown parameter(s) of the underlying lifetime model under the generalized progressive hybrid censoring scheme. The expressions of the expected number of failures and the expected duration of life test are also derived. Exponential and Weibull lifetime models are considered for numerical illustrations. Finally, Fisher information-based optimal schemes are discussed for the Weibull lifetime model.  相似文献   

3.
Due to the high reliability and high testing cost of electro-explosive devices, even though an accelerated test is performed, one may observe very few failures or even no failures at all due to censoring. In this paper, we consider modelling the reliability of such devices by an exponential lifetime distribution in which the failure rate is assumed to be a function of some covariates and that the observed data are binary. The Bayesian approach, with three different prior settings, is used to develop inference on the failure rate, lifetime and the reliability under some settings. A Monte Carlo simulation study is carried out to show that this approach is quite useful and suitable for analysing data of the considered form, especially when the failure rates are very small. Finally, illustrative data are analysed using this approach.  相似文献   

4.
In this article, we investigate the potential usefulness of the three-parameter transmuted Weibull distribution for modeling survival data. The main advantage of this distribution is that it has increasing, decreasing or constant instantaneous failure rate depending on the shape parameter and the new transmuting parameter. We obtain several mathematical properties of the transmuted Weibull distribution such as the expressions for the quantile function, moments, geometric mean, harmonic mean, Shannon, Rényi and q-entropies, mean deviations, Bonferroni and Lorenz curves, and the moments of order statistics. We propose a location-scale regression model based on the log-transmuted Weibull distribution for modeling lifetime data. Applications to two real datasets are given to illustrate the flexibility and potentiality of the transmuted Weibull family of lifetime distributions.  相似文献   

5.
The Maxwell (or Maxwell–Boltzmann) distribution was invented to solve the problems relating to physics and chemistry. It has also proved its strength of analysing the lifetime data. For this distribution, we consider point and interval estimation procedures in the presence of type-I progressively hybrid censored data. We obtain maximum likelihood estimator of the parameter and provide asymptotic and bootstrap confidence intervals of it. The Bayes estimates and Bayesian credible and highest posterior density intervals are obtained using inverted gamma prior. The expression of the expected number of failures in life testing experiment is also derived. The results are illustrated through the simulation study and analysis of a real data set is presented.  相似文献   

6.
Modelling accelerated life test data by using a Bayesian approach   总被引:1,自引:0,他引:1  
Summary. Because of the high reliability of many modern products, accelerated life tests are becoming widely used to obtain timely information about their time-to-failure distributions. We propose a general class of accelerated life testing models which are motivated by the actual failure process of units from a limited failure population with a positive probability of not failing during the technological lifetime. We demonstrate a Bayesian approach to this problem, using a new class of models with non-monotone hazard rates, the hazard model with potential scope for use far beyond accelerated life testing. Our methods are illustrated with the modelling and analysis of a data set on lifetimes of printed circuit boards under humidity accelerated life testing.  相似文献   

7.
We consider the occurrence of warranty claims for automobiles when both age and mileage accumulation may affect failure. The presence of both age and mileage limits on warranties creates interesting problems for the analysis of failures. We propose a family of models that relates failure to time and mileage accumulation. Methods for fitting the models based on warranty data and supplementary information about mileage accumulation are presented and illustrated on some real data. The general problem of modelling failures in equipment when both time and usage are factors is discussed.  相似文献   

8.
In this article, we develop a formal goodness-of-fit testing procedure for one-shot device testing data, in which each observation in the sample is either left censored or right censored. Such data are also called current status data. We provide an algorithm for calculating the nonparametric maximum likelihood estimate (NPMLE) of the unknown lifetime distribution based on such data. Then, we consider four different test statistics that can be used for testing the goodness-of-fit of accelerated failure time (AFT) model by the use of samples of residuals: a chi-square-type statistic based on the difference between the empirical and expected numbers of failures at each inspection time; two other statistics based on the difference between the NPMLE of the lifetime distribution obtained from one-shot device testing data and the distribution specified under the null hypothesis; as a final statistic, we use White's idea of comparing two estimators of the Fisher Information (FI) to propose a test statistic. We then compare these tests in terms of power, and draw some conclusions. Finally, we present an example to illustrate the proposed tests.  相似文献   

9.
In this paper, we propose a flexible cure rate survival model by assuming that the number of competing causes of the event of interest follows the Negative Binomial distribution and the time to event follows a Weibull distribution. Indeed, we introduce the Weibull-Negative-Binomial (WNB) distribution, which can be used in order to model survival data when the hazard rate function is increasing, decreasing and some non-monotonous shaped. Another advantage of the proposed model is that it has some distributions commonly used in lifetime analysis as particular cases. Moreover, the proposed model includes as special cases some of the well-know cure rate models discussed in the literature. We consider a frequentist analysis for parameter estimation of a WNB model with cure rate. Then, we derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and present some ways to perform global influence analysis. Finally, the methodology is illustrated on a medical data.  相似文献   

10.
In this paper, we consider the Bayesian analysis of competing risks data, when the data are partially complete in both time and type of failures. It is assumed that the latent cause of failures have independent Weibull distributions with the common shape parameter, but different scale parameters. When the shape parameter is known, it is assumed that the scale parameters have Beta–Gamma priors. In this case, the Bayes estimates and the associated credible intervals can be obtained in explicit forms. When the shape parameter is also unknown, it is assumed that it has a very flexible log-concave prior density functions. When the common shape parameter is unknown, the Bayes estimates of the unknown parameters and the associated credible intervals cannot be obtained in explicit forms. We propose to use Markov Chain Monte Carlo sampling technique to compute Bayes estimates and also to compute associated credible intervals. We further consider the case when the covariates are also present. The analysis of two competing risks data sets, one with covariates and the other without covariates, have been performed for illustrative purposes. It is observed that the proposed model is very flexible, and the method is very easy to implement in practice.  相似文献   

11.
We studied the inferences of an availability system with reboot delay and standby switching failures in which the system consisted of two operating units and one warm standby. The system was studied under the assumption that the time-to-failure and the time-to-repair were assumed to follow an exponential and a general distribution. The reboot times are assumed to be exponentially distributed with parameter β. We constructed a consistent and asymptotically normal estimator of availability for such a repairable system. Based on this estimator, interval estimation and testing hypothesis were developed by using logit transformation. To implement the simulation inference for the system availability, we adopted two repair-time distributions—namely, lognormal and Weibull; and three types of Weibull distributions—characterized by their shape parameters—were considered. Finally, appropriate tables and figures of all simulation results have been included.  相似文献   

12.
We extend proportional hazards frailty models for lifetime data to allow a negative binomial, Poisson, Geometric or other discrete distribution of the frailty variable. This might represent, for example, the unknown number of flaws in an item under test. Zero frailty corresponds to a limited failure model containing a proportion of units that never fail (long-term survivors). Ways of modifying the model to avoid this are discussed. The models are illustrated on a previously published set of data on failures of printed circuit boards and on new data on breaking strengths of samples of cord.  相似文献   

13.
In this article, the finite mixture model of Weibull distributions is studied, the identifiability of the model with m components is proven, and the parameter estimators for the case of two components resulted by several algorithms are compared. The parameter estimators are obtained with maximum likelihood performing calculations with different algorithms: expectation-maximization (EM), Fisher scoring, backfitting, optimization of k-nearest neighbor approach, and random walk algorithm using Monte Carlo simulation. The Akaike information criterion and the log-likelihood value are used to compare models. In general, the proposed random walk algorithm shows better performance in mean square error and bias. Finally, the results are applied to electronic component lifetime data.  相似文献   

14.
We address the issue of performing testing inference in the class of zero-inflated power series models. These models provide a straightforward way of modelling count data and have been widely used in practical situations. The likelihood ratio, Wald and score statistics provide the basis for testing the parameter of inflation of zeros in this class of models. In this paper, in addition to the well-known test statistics, we also consider the recently proposed gradient statistic. We conduct Monte Carlo simulation experiments to evaluate the finite-sample performance of these tests for testing the parameter of inflation of zeros. The numerical results show that the new gradient test we propose is more reliable in finite samples than the usual likelihood ratio, Wald and score tests. An empirical application to real data is considered for illustrative purposes.  相似文献   

15.
Some traditional life tests result in no or very few failures by the end of test. In such cases, one approach is to do life testing at higher-than-usual stress conditions in order to obtain failures quickly. This paper discusses a k-level step-stress accelerated life test under type I progressive group-censoring with random removals. An exponential failure time distribution with mean life that is a log-linear function of stress and a cumulative exposure model are considered. We derive the maximum likelihood estimators of the model parameters and establish the asymptotic properties of the estimators. We investigate four selection criteria which enable us to obtain the optimum test plans. One is to minimize the asymptotic variance of the maximum likelihood estimator of the logarithm of the mean lifetime at use-condition, and the other three criteria are to maximize the determinant, trace and the smallest eigenvalue of Fisher's information matrix. Some numerical studies are discussed to illustrate the proposed criteria.  相似文献   

16.
The Birnbaum-Saunders regression model is becoming increasingly popular in lifetime analyses and reliability studies. In this model, the signed likelihood ratio statistic provides the basis for testing inference and construction of confidence limits for a single parameter of interest. We focus on the small sample case, where the standard normal distribution gives a poor approximation to the true distribution of the statistic. We derive three adjusted signed likelihood ratio statistics that lead to very accurate inference even for very small samples. Two empirical applications are presented.  相似文献   

17.
We decompose the score statistic for testing for shared finite variance frailty in multivariate lifetime data into marginal and covariance-based terms. The null properties of the covariance-based statistic are derived in the context of parametric lifetime models. Its non-null properties are estimated using simulation and compared with those of the score test and two likelihood ratio tests when the underlying lifetime distribution is Weibull. Some examples are used to illustrate the covariance-based test. A case is made for using the covariance-based statistic as a simple diagnostic procedure for shared frailty in a parametric exploratory analysis of multivariate lifetime data and a link to the bivariate Clayton–Oakes copula model is shown.  相似文献   

18.
The introduction of shape parameters into statistical distributions provided flexible models that produced better fit to experimental data. The Weibull and gamma families are prime examples wherein shape parameters produce more reliable statistical models than standard exponential models in lifetime studies. In the presence of many independent gamma populations, one may test equality (or homogeneity) of shape parameters. In this article, we develop two tests for testing shape parameters of gamma distributions using chi-square distributions, stochastic majorization, and Schur convexity. The first one tests hypotheses on the shape parameter of a single gamma distribution. We numerically examine the performance of this test and find that it controls Type I error rate for small samples. To compare shape parameters of a set of independent gamma populations, we develop a test that is unbiased in the sense of Schur convexity. These tests are motivated by the need to have simple, easy to use tests and accurate procedures in case of small samples. We illustrate the new tests using three real datasets taken from engineering and environmental science. In addition, we investigate the Bayes’ factor in this context and conclude that for small samples, the frequentist approach performs better than the Bayesian approach.  相似文献   

19.
The inverse gaussian distribution is a flexible model which has been extensively applied in the theory of generalized linear models and accelerated life testing where early failure times predominate. More recently it has received attention in areas such as quality control, and as an underlying model that provides an alternative to the analysis of variance. In reliability testing and acceptance sampling data acquisition is often in the face of scarce resources and may be both costly and time-consuming. In such settings it is desirable to reach a statistically sound decision as quickly as possible. Based on sequential probability ratio tests (SPRT), sequential sampling plans provide one method of arriving at a timely, statistically based decision. A sequential sampling plan for the inverse gaussian process mean when the value of the shape parameter of the density is known is presented in this paper.  相似文献   

20.
Summary.  The literature on multivariate linear regression includes multivariate normal models, models that are used in survival analysis and a variety of models that are used in other areas such as econometrics. The paper considers the class of location–scale models, which includes a large proportion of the preceding models. It is shown that, for complete data, the maximum likelihood estimators for regression coefficients in a linear location–scale framework are consistent even when the joint distribution is misspecified. In addition, gains in efficiency arising from the use of a bivariate model, as opposed to separate univariate models, are studied. A major area of application for multivariate regression models is to clustered, 'parallel' lifetime data, so we also study the case of censored responses. Estimators of regression coefficients are no longer consistent under model misspecification, but we give simulation results that show that the bias is small in many practical situations. Gains in efficiency from bivariate models are also examined in the censored data setting. The methodology in the paper is illustrated by using lifetime data from the Diabetic Retinopathy Study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号