首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purpose of this paper is to relate a number of multinomial models currently in use for ordinal response data in a unified manner. By studying generalized logit models, proportional generalized odds ratio models and proportional generalized hazard models under different parameterizations, we conclude that there are only four different models and they can be specified genericaUy in a uniform way. These four models all possess the same stochastic ordering property and we compare them graphically in a simple case. Data from the NHLBI TYPE II study (Brensike et al (1984)) is used to illustrate these models. We show that the BMDP programs LE and PR can be employed in computing maximum likelihood estimators for these four models.  相似文献   

2.
3.
In this study, we develop nonparametric analysis of deviance tools for generalized partially linear models based on local polynomial fitting. Assuming a canonical link, we propose expressions for both local and global analysis of deviance, which admit an additivity property that reduces to analysis of variance decompositions in the Gaussian case. Chi-square tests based on integrated likelihood functions are proposed to formally test whether the nonparametric term is significant. Simulation results are shown to illustrate the proposed chi-square tests and to compare them with an existing procedure based on penalized splines. The methodology is applied to German Bundesbank Federal Reserve data.  相似文献   

4.
Model-based clustering is a flexible grouping technique based on fitting finite mixture models to data groups. Despite its rapid development in recent years, there is rather limited literature devoted to developing diagnostic tools for obtained clustering solutions. In this paper, a new method through fuzzy variation decomposition is proposed for probabilistic assessing contribution of variables to a detected dataset partition. Correlation between-variable contributions reveals the underlying variable interaction structure. A visualization tool illustrates whether two variables work collaboratively or exclusively in the model. Elimination of negative-effect variables in the partition leads to better classification results. The developed technique is employed on real-life datasets with promising results.  相似文献   

5.
6.
Summary.  We present an approach for correcting for interobserver measurement error in an ordinal logistic regression model taking into account also the variability of the estimated correction terms. The different scoring behaviour of the 16 examiners complicated the identification of a geographical trend in a recent study on caries experience in Flemish children (Belgium) who were 7 years old. Since the measurement error is on the response the factor 'examiner' could be included in the regression model to correct for its confounding effect. However, controlling for examiner largely removed the geographical east–west trend. Instead, we suggest a (Bayesian) ordinal logistic model which corrects for the scoring error (compared with a gold standard) using a calibration data set. The marginal posterior distribution of the regression parameters of interest is obtained by integrating out the correction terms pertaining to the calibration data set. This is done by processing two Markov chains sequentially, whereby one Markov chain samples the correction terms. The sampled correction term is imputed in the Markov chain pertaining to the regression parameters. The model was fitted to the oral health data of the Signal–Tandmobiel® study. A WinBUGS program was written to perform the analysis.  相似文献   

7.
Longitudinal health-related quality-of-life (QOL) data are often collected as part of clinical studies. Here two analyses of QOL data from a prospective study of breast cancer patients evaluate how physical performance is related to factors such as age, menopausal status and type of adjuvant treatment. The first analysis uses summary statistic methods. The same questions are then addressed using a multilevel model. Because of the structure of the physical performance response, regression models for the analysis of ordinal data are used. The analyses of base-line and follow-up QOL data at four time points over two years from 257 women show that reported base-line physical performance was consistently associated with later performance and that women who had received chemotherapy in the month before the QOL assessment had a greater physical performance burden. There is a slight power gain of the multilevel model over the summary statistic analysis. The multilevel model also allows relationships with time-dependent covariates to be included, highlighting treatment-related factors affecting physical performance that could not be considered within the summary statistic analysis. Checking of the multilevel model assumptions is exemplified.  相似文献   

8.
Summary This paper investigates the effects of ordinal regressors in linear regression models and in limited dependent variable models. Each ordered categorical variable is interpreted as a rough measurement of an underlying continuous variable as it is often done in microeconometrics for the dependent variable. It is shown that using ordinal indicators only leads to correct answers in a few special cases. In most situations, the usual estimators are biased. In order to estimate the parameters of the model consistently, the indirect estimation procedure suggested by Gourieroux et al. (1993) is applied. To demonstrate this method, first a simulation study is performed and then in a second step, two real data sets are used. In the latter case, continuous regressors are transformed into categorical variables to study the behavior of the estimation procedure. The method is extended to the case of limited dependent variable models. In general, the indirect estimators lead to adequate results. Received: March 27, 2000; revised version: March 6, 2001  相似文献   

9.
10.
An approach to the analysis of time-dependent ordinal quality score data from robust design experiments is developed and applied to an experiment from commercial horticultural research, using concepts of product robustness and longevity that are familiar to analysts in engineering research. A two-stage analysis is used to develop models describing the effects of a number of experimental treatments on the rate of post-sales product quality decline. The first stage uses a polynomial function on a transformed scale to approximate the quality decline for an individual experimental unit using derived coefficients and the second stage uses a joint mean and dispersion model to investigate the effects of the experimental treatments on these derived coefficients. The approach, developed specifically for an application in horticulture, is exemplified with data from a trial testing ornamental plants that are subjected to a range of treatments during production and home-life. The results of the analysis show how a number of control and noise factors affect the rate of post-production quality decline. Although the model is used to analyse quality data from a trial on ornamental plants, the approach developed is expected to be more generally applicable to a wide range of other complex production systems.  相似文献   

11.
Summary.  Hansen, Kooperberg and Sardy introduced a family of continuous, piecewise linear functions defined over adaptively selected triangulations of the plane as a general approach to statistical modelling of bivariate densities and regression and hazard functions. These triograms enjoy a natural affine equivariance that offers distinct advantages over competing tensor product methods that are more commonly used in statistical applications. Triograms employ basis functions consisting of linear 'tent functions' defined with respect to a triangulation of a given planar domain. As in knot selection for univariate splines, Hansen and colleagues adopted the regression spline approach of Stone. Vertices of the triangulation are introduced or removed sequentially in an effort to balance fidelity to the data and parsimony. We explore a smoothing spline variant of the triogram model based on a roughness penalty adapted to the piecewise linear structure of the triogram model. We show that the roughness penalty proposed may be interpreted as a total variation penalty on the gradient of the fitted function. The methods are illustrated with real and artificial examples, including an application to estimated quantile surfaces of land value in the Chicago metropolitan area.  相似文献   

12.
Planning and conducting interim analysis are important steps for long-term clinical trials. In this article, the concept of conditional power is combined with the classic analysis of variance (ANOVA) for a study of two-stage sample size re-estimation based on interim analysis. The overall Type I and Type II errors would be inflated by interim analysis. We compared the effects on re-estimating sample sizes with and without the adjustment of Type I and Type II error rates due to interim analysis.  相似文献   

13.
It appears to be common practice with ridge regression to obtain a decomposition of the total sum of squares, and assign degrees of freedom, according to established least squares theory. This discussion notes the obvious fallacies of such an approach, and introduces a decomposition based on orthogonality, and degrees of freedom based on expected mean squares, for non-stochastic k.  相似文献   

14.
15.
We propose a mixture model for data with an ordinal outcome and a longitudinal covariate that is subject to missingness. Data from a tailored telephone delivered, smoking cessation intervention for construction laborers are used to illustrate the method, which considers as an outcome a categorical measure of smoking cessation, and evaluates the effectiveness of the motivational telephone interviews on this outcome. We propose two model structures for the longitudinal covariate, for the case when the missing data are missing at random, and when the missing data mechanism is non-ignorable. A generalized EM algorithm is used to obtain maximum likelihood estimates.  相似文献   

16.
Icicle Plots: Better Displays for Hierarchical Clustering   总被引:1,自引:0,他引:1  
An icicle plot is a method for presenting a hierarchical clustering. Compared with other methods of presentation, it is far easier in an icicle plot to read off which objects belong to which clusters, and which objects join or drop out from a cluster as we move up and down the levels of the hierarchy, though these benefits only appear when enough objects are being clustered. Icicle plots are described, and their benefits are illustrated using a clustering of 48 objects.  相似文献   

17.
Functional data analysis (FDA)—the analysis of data that can be considered a set of observed continuous functions—is an increasingly common class of statistical analysis. One of the most widely used FDA methods is the cluster analysis of functional data; however, little work has been done to compare the performance of clustering methods on functional data. In this article, a simulation study compares the performance of four major hierarchical methods for clustering functional data. The simulated data varied in three ways: the nature of the signal functions (periodic, non periodic, or mixed), the amount of noise added to the signal functions, and the pattern of the true cluster sizes. The Rand index was used to compare the performance of each clustering method. As a secondary goal, clustering methods were also compared when the number of clusters has been misspecified. To illustrate the results, a real set of functional data was clustered where the true clustering structure is believed to be known. Comparing the clustering methods for the real data set confirmed the findings of the simulation. This study yields concrete suggestions to future researchers to determine the best method for clustering their functional data.  相似文献   

18.
In this paper, it is demonstrated that coefficient of determination of an ANOVA linear model provides a measure of polarization. Taking as the starting point the link between polarization and dispersion, we reformulate the measure of polarization of Zhang and Kanbur using the decomposition of the variance instead of the decomposition of the Theil index. We show that the proposed measure is equivalent to the coefficient of determination of an ANOVA linear model that explains, for example, the income of the households as a function of any population characteristic such as education, gender, occupation, etc. This result provides an alternative way to analyse polarization by sub-populations characteristics and at the same time allows us to compare sub-populations via the estimated coefficients of the ANOVA model.  相似文献   

19.
ABSTRACT

Often in data arising out of epidemiologic studies, covariates are subject to measurement error. In addition ordinal responses may be misclassified into a category that does not reflect the true state of the respondents. The goal of the present work is to develop an ordered probit model that corrects for the classification errors in ordinal responses and/or measurement error in covariates. Maximum likelihood method of estimation is used. Simulation study reveals the effect of ignoring measurement error and/or classification errors on the estimates of the regression coefficients. The methodology developed is illustrated through a numerical example.  相似文献   

20.
Summary.  In many areas of pharmaceutical research, there has been increasing use of categorical data and more specifically ordinal responses. In many cases, complex models are required to account for different types of dependences among the responses. The clinical trial that is considered here involved patients who were required to remain in a particular state to enable the doctors to examine their heart. The aim of this trial was to study the relationship between the dose of the drug administered and the time that was spent by the patient in the state permitting examination. The patient's state was measured every second by a continuous Doppler signal which was categorized by the doctors into one of four ordered categories. Hence, the response consisted of repeated ordinal series. These series were of different lengths because the drug effect wore off faster (or slower) on certain patients depending on the drug dose administered and the infusion rate, and therefore the length of drug administration. A general method for generating new ordinal distributions is presented which is sufficiently flexible to handle unbalanced ordinal repeated measurements. It consists of obtaining a cumulative mixture distribution from a Laplace transform and introducing into it the integrated intensity of a binary logistic, continuation ratio or proportional odds model. Then, a multivariate distribution is constructed by a procedure that is similar to the updating process of the Kalman filter. Several types of history dependences are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号