首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we consider the empirical likelihood inferences of the partial functional linear model with missing responses. Two empirical log-likelihood ratios of the parameters of interest are constructed, and the corresponding maximum empirical likelihood estimators of parameters are derived. Under some regularity conditions, we show that the proposed two empirical log-likelihood ratios are asymptotic standard Chi-squared. Thus, the asymptotic results can be used to construct the confidence intervals/regions for the parameters of interest. We also establish the asymptotic distribution theory of corresponding maximum empirical likelihood estimators. A simulation study indicates that the proposed methods are comparable in terms of coverage probabilities and average lengths of confidence intervals. An example of real data is also used to illustrate our proposed methods.  相似文献   

2.
The currently existing estimation methods and goodness-of-fit tests for the Cox model mainly deal with right censored data, but they do not have direct extension to other complicated types of censored data, such as doubly censored data, interval censored data, partly interval-censored data, bivariate right censored data, etc. In this article, we apply the empirical likelihood approach to the Cox model with complete sample, derive the semiparametric maximum likelihood estimators (SPMLE) for the Cox regression parameter and the baseline distribution function, and establish the asymptotic consistency of the SPMLE. Via the functional plug-in method, these results are extended in a unified approach to doubly censored data, partly interval-censored data, and bivariate data under univariate or bivariate right censoring. For these types of censored data mentioned, the estimation procedures developed here naturally lead to Kolmogorov-Smirnov goodness-of-fit tests for the Cox model. Some simulation results are presented.  相似文献   

3.
In this article, empirical likelihood inferences for semiparametric varying-coefficient partially linear models with longitudinal data are investigated. We propose a groupwise empirical likelihood procedure to handle the inter-series dependence of the longitudinal data. By using residual-adjustment, an empirical likelihood ratio function for the nonparametric component is constructed, and a nonparametric version Wilks' phenomenons is proved. Compared with methods based on normal approximations, the empirical likelihood does not require consistent estimators for the asymptotic variance and bias. A simulation study is undertaken to assess the finite sample performance of the proposed confidence regions.  相似文献   

4.
In this paper, we introduce the empirical likelihood (EL) method to longitudinal studies. By considering the dependence within subjects in the auxiliary random vectors, we propose a new weighted empirical likelihood (WEL) inference for generalized linear models with longitudinal data. We show that the weighted empirical likelihood ratio always follows an asymptotically standard chi-squared distribution no matter which working weight matrix that we have chosen, but a well chosen working weight matrix can improve the efficiency of statistical inference. Simulations are conducted to demonstrate the accuracy and efficiency of our proposed WEL method, and a real data set is used to illustrate the proposed method.  相似文献   

5.
We focus on the nonparametric regression of a scalar response on a functional explanatory variable. As an alternative to the well-known Nadaraya-Watson estimator for regression function in this framework, the locally modelled regression estimator performs very well [cf. [Barrientos-Marin, J., Ferraty, F., and Vieu, P. (2010), ‘Locally Modelled Regression and Functional Data’, Journal of Nonparametric Statistics, 22, 617–632]. In this paper, the asymptotic properties of locally modelled regression estimator for functional data are considered. The mean-squared convergence as well as asymptotic normality for the estimator are established. We also adapt the empirical likelihood method to construct the point-wise confidence intervals for the regression function and derive the Wilk's phenomenon for the empirical likelihood inference. Furthermore, a simulation study is presented to illustrate our theoretical results.  相似文献   

6.
This article considers statistical inference for partially linear varying-coefficient models when the responses are missing at random. We propose a profile least-squares estimator for the parametric component with complete-case data and show that the resulting estimator is asymptotically normal. To avoid to estimate the asymptotic covariance in establishing confidence region of the parametric component with the normal-approximation method, we define an empirical likelihood based statistic and show that its limiting distribution is chi-squared distribution. Then, the confidence regions of the parametric component with asymptotically correct coverage probabilities can be constructed by the result. To check the validity of the linear constraints on the parametric component, we construct a modified generalized likelihood ratio test statistic and demonstrate that it follows asymptotically chi-squared distribution under the null hypothesis. Then, we extend the generalized likelihood ratio technique to the context of missing data. Finally, some simulations are conducted to illustrate the proposed methods.  相似文献   

7.
Abstract. We investigate resampling methodologies for testing the null hypothesis that two samples of labelled landmark data in three dimensions come from populations with a common mean reflection shape or mean reflection size‐and‐shape. The investigation includes comparisons between (i) two different test statistics that are functions of the projection onto tangent space of the data, namely the James statistic and an empirical likelihood statistic; (ii) bootstrap and permutation procedures; and (iii) three methods for resampling under the null hypothesis, namely translating in tangent space, resampling using weights determined by empirical likelihood and using a novel method to transform the original sample entirely within refection shape space. We present results of extensive numerical simulations, on which basis we recommend a bootstrap test procedure that we expect will work well in practise. We demonstrate the procedure using a data set of human faces, to test whether humans in different age groups have a common mean face shape.  相似文献   

8.
Abstract

Based on the approach of Pan and Zhou, we demonstrate that empirical likelihood ratios in terms of cumulative hazard function for left-truncated and right-censored (LTRC) data can be used to form confidence intervals for the parameters that are linear functionals of the cumulative hazard function. Simulation studies indicate that the empirical likelihood ratio based confidence intervals work well in finite samples.  相似文献   

9.
This article aims at proposing a new type of empirical likelihood testing procedure based on the Wilks theorem and imputed value in censored partial linear model. The present study is mainly designed to use empirical likelihood (EL) method based on synthetic dependent data, and the result can not be applied directly due to the weights in it. In this article, a censored empirical log-likelihood ratio is introduced to tackle this problem. Particularly, we demonstrate that its limiting distribution is a standard chi-squared distribution with freedom of one. This method is used to calculate the p-value and construct the confidence interval. Some simulation studies are conducted to highlight the performance of the proposed EL method, and the results show that it performs well. Finally, an illustration is given using the Stanford Heart Transplant data.  相似文献   

10.
Simulated maximum likelihood estimates an analytically intractable likelihood function with an empirical average based on data simulated from a suitable importance sampling distribution. In order to use simulated maximum likelihood in an efficient way, the choice of the importance sampling distribution as well as the mechanism to generate the simulated data are crucial. In this paper we develop a new heuristic for an automated, multistage implementation of simulated maximum likelihood which, by adaptively updating the importance sampler, approximates the (locally) optimal importance sampling distribution. The proposed approach also allows for a convenient incorporation of quasi-Monte Carlo methods. Quasi-Monte Carlo methods produce simulated data which can significantly increase the accuracy of the likelihood-estimate over regular Monte Carlo methods. Several examples provide evidence for the potential efficiency gain of this new method. We apply the method to a computationally challenging geostatistical model of online retailing.  相似文献   

11.
Ruiqin Tian 《Statistics》2017,51(5):988-1005
In this paper, empirical likelihood inference for longitudinal data within the framework of partial linear regression models are investigated. The proposed procedures take into consideration the correlation within groups without involving direct estimation of nuisance parameters in the correlation matrix. The empirical likelihood method is used to estimate the regression coefficients and the baseline function, and to construct confidence intervals. A nonparametric version of Wilk's theorem for the limiting distribution of the empirical likelihood ratio is derived. Compared with methods based on normal approximations, the empirical likelihood does not require consistent estimators for the asymptotic variance and bias. The finite sample behaviour of the proposed method is evaluated with simulation and illustrated with an AIDS clinical trial data set.  相似文献   

12.
In this article, we consider a semivarying coefficient model with application to longitudinal data. In order to accommodate the within-group correlation, we apply the block empirical likelihood procedure to semivarying coefficient longitudinal data model, and prove a nonparametric version of Wilks' theorem which can be used to construct the block empirical likelihood confidence region with asymptotically correct coverage probability for the parametric component. In comparison with normal approximations, the proposed method does not require a consistent estimator for the asymptotic covariance matrix, making it easier to conduct inference for the model's parametric component. Simulations demonstrate how the proposed method works.  相似文献   

13.
Kendall and Gehan estimating functions are commonly used to estimate the regression parameter in accelerated failure time model with censored observations in survival analysis. In this paper, we apply the jackknife empirical likelihood method to overcome the computation difficulty about interval estimation. A Wilks’ theorem of jackknife empirical likelihood for U-statistic type estimating equations is established, which is used to construct the confidence intervals for the regression parameter. We carry out an extensive simulation study to compare the Wald-type procedure, the empirical likelihood method, and the jackknife empirical likelihood method. The proposed jackknife empirical likelihood method has a better performance than the existing methods. We also use a real data set to compare the proposed methods.  相似文献   

14.
Empirical Bayes is a versatile approach to “learn from a lot” in two ways: first, from a large number of variables and, second, from a potentially large amount of prior information, for example, stored in public repositories. We review applications of a variety of empirical Bayes methods to several well‐known model‐based prediction methods, including penalized regression, linear discriminant analysis, and Bayesian models with sparse or dense priors. We discuss “formal” empirical Bayes methods that maximize the marginal likelihood but also more informal approaches based on other data summaries. We contrast empirical Bayes to cross‐validation and full Bayes and discuss hybrid approaches. To study the relation between the quality of an empirical Bayes estimator and p, the number of variables, we consider a simple empirical Bayes estimator in a linear model setting. We argue that empirical Bayes is particularly useful when the prior contains multiple parameters, which model a priori information on variables termed “co‐data”. In particular, we present two novel examples that allow for co‐data: first, a Bayesian spike‐and‐slab setting that facilitates inclusion of multiple co‐data sources and types and, second, a hybrid empirical Bayes–full Bayes ridge regression approach for estimation of the posterior predictive interval.  相似文献   

15.
In this article, the generalized linear model for longitudinal data is studied. A generalized empirical likelihood method is proposed by combining generalized estimating equations and quadratic inference functions based on the working correlation matrix. It is proved that the proposed generalized empirical likelihood ratios are asymptotically chi-squared under some suitable conditions, and hence it can be used to construct the confidence regions of the parameters. In addition, the maximum empirical likelihood estimates of parameters are obtained, and their asymptotic normalities are proved. Some simulations are undertaken to compare the generalized empirical likelihood and normal approximation-based method in terms of coverage accuracies and average areas/lengths of confidence regions/intervals. An example of a real data is used for illustrating our methods.  相似文献   

16.
This article investigates the testing for serial correlation in partially linear models with validation data and applies the empirical likelihood methods to construct serial tests statistics, and then we derive the asymptotic distribution of the test statistics under null hypothesis. Simulation results show that our method performs well.  相似文献   

17.
Empirical likelihood for generalized linear models with missing responses   总被引:1,自引:0,他引:1  
The paper uses the empirical likelihood method to study the construction of confidence intervals and regions for regression coefficients and response mean in generalized linear models with missing response. By using the inverse selection probability weighted imputation technique, the proposed empirical likelihood ratios are asymptotically chi-squared. Our approach is to directly calibrate the empirical likelihood ratio, which is called as a bias-correction method. Also, a class of estimators for the parameters of interest is constructed, and the asymptotic distributions of the proposed estimators are obtained. A simulation study indicates that the proposed methods are comparable in terms of coverage probabilities and average lengths/areas of confidence intervals/regions. An example of a real data set is used for illustrating our methods.  相似文献   

18.
We investigate use of empirical and exponential empirical likelihood, and Hotelling and James statistics, to test the null hypothesis of equal population means based on two independent samples of data on the simplex. We perform an extensive numerical study using data simulated from various distributions on the simplex. The results, taken together with practical considerations regarding implementation, support the use of bootstrap-calibrated James statistic.  相似文献   

19.
The linear regression model for right censored data, also known as the accelerated failure time model using the logarithm of survival time as the response variable, is a useful alternative to the Cox proportional hazards model. Empirical likelihood as a non‐parametric approach has been demonstrated to have many desirable merits thanks to its robustness against model misspecification. However, the linear regression model with right censored data cannot directly benefit from the empirical likelihood for inferences mainly because of dependent elements in estimating equations of the conventional approach. In this paper, we propose an empirical likelihood approach with a new estimating equation for linear regression with right censored data. A nested coordinate algorithm with majorization is used for solving the optimization problems with non‐differentiable objective function. We show that the Wilks' theorem holds for the new empirical likelihood. We also consider the variable selection problem with empirical likelihood when the number of predictors can be large. Because the new estimating equation is non‐differentiable, a quadratic approximation is applied to study the asymptotic properties of penalized empirical likelihood. We prove the oracle properties and evaluate the properties with simulated data. We apply our method to a Surveillance, Epidemiology, and End Results small intestine cancer dataset.  相似文献   

20.
In many case-control studies, it is common to utilize paired data when treatments are being evaluated. In this article, we propose and examine an efficient distribution-free test to compare two independent samples, where each is based on paired observations. We extend and modify the density-based empirical likelihood ratio test presented by Gurevich and Vexler [7] to formulate an appropriate parametric likelihood ratio test statistic corresponding to the hypothesis of our interest and then to approximate the test statistic nonparametrically. We conduct an extensive Monte Carlo study to evaluate the proposed test. The results of the performed simulation study demonstrate the robustness of the proposed test with respect to values of test parameters. Furthermore, an extensive power analysis via Monte Carlo simulations confirms that the proposed method outperforms the classical and general procedures in most cases related to a wide class of alternatives. An application to a real paired data study illustrates that the proposed test can be efficiently implemented in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号