首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Reference priors are theoretically attractive for the analysis of geostatistical data since they enable automatic Bayesian analysis and have desirable Bayesian and frequentist properties. But their use is hindered by computational hurdles that make their application in practice challenging. In this work, we derive a new class of default priors that approximate reference priors for the parameters of some Gaussian random fields. It is based on an approximation to the integrated likelihood of the covariance parameters derived from the spectral approximation of stationary random fields. This prior depends on the structure of the mean function and the spectral density of the model evaluated at a set of spectral points associated with an auxiliary regular grid. In addition to preserving the desirable Bayesian and frequentist properties, these approximate reference priors are more stable, and their computations are much less onerous than those of exact reference priors. Unlike exact reference priors, the marginal approximate reference prior of correlation parameter is always proper, regardless of the mean function or the smoothness of the correlation function. This property has important consequences for covariance model selection. An illustration comparing default Bayesian analyses is provided with a dataset of lead pollution in Galicia, Spain.  相似文献   

2.
Reference analysis, introduced by Bernardo (J. Roy. Statist. Soc. 41 (1979) 113) and further developed by Berger and Bernardo (On the development of reference priors (with discussion). In: J.M. Bernardo, J.O. Berger, A.P. Dawid, A.F.M. Smith (Eds.), Bayesian Statistics, Vol. 4, Clarendon Press, Oxford, pp. 35–60), has proved to be one of the most successful general methods to derive noninformative prior distributions. In practice, however, reference priors are typically difficult to obtain. In this paper we show how to find reference priors for a wide class of exponential family likelihoods.  相似文献   

3.
This paper develops an objective Bayesian analysis method for estimating unknown parameters of the half-logistic distribution when a sample is available from the progressively Type-II censoring scheme. Noninformative priors such as Jeffreys and reference priors are derived. In addition, derived priors are checked to determine whether they satisfy probability-matching criteria. The Metropolis–Hasting algorithm is applied to generate Markov chain Monte Carlo samples from these posterior density functions because marginal posterior density functions of each parameter cannot be expressed in an explicit form. Monte Carlo simulations are conducted to investigate frequentist properties of estimated models under noninformative priors. For illustration purposes, a real data set is presented, and the quality of models under noninformative priors is evaluated through posterior predictive checking.  相似文献   

4.
For normal populations with unequal variances, we develop matching priors and reference priors for a linear combination of the means. Here, we find three second-order matching priors: a highest posterior density (HPD) matching prior, a cumulative distribution function (CDF) matching prior, and a likelihood ratio (LR) matching prior. Furthermore, we show that the reference priors are all first-order matching priors, but that they do not satisfy the second-order matching criterion that establishes the symmetry and the unimodality of the posterior under the developed priors. The results of a simulation indicate that the second-order matching prior outperforms the reference priors in terms of matching the target coverage probabilities, in a frequentist sense. Finally, we compare the Bayesian credible intervals based on the developed priors with the confidence intervals derived from real data.  相似文献   

5.
The Jeffreys-rule prior and the marginal independence Jeffreys prior are recently proposed in Fonseca et al. [Objective Bayesian analysis for the Student-t regression model, Biometrika 95 (2008), pp. 325–333] as objective priors for the Student-t regression model. The authors showed that the priors provide proper posterior distributions and perform favourably in parameter estimation. Motivated by a practical financial risk management application, we compare the performance of the two Jeffreys priors with other priors proposed in the literature in a problem of estimating high quantiles for the Student-t model with unknown degrees of freedom. Through an asymptotic analysis and a simulation study, we show that both Jeffreys priors perform better in using a specific quantile of the Bayesian predictive distribution to approximate the true quantile.  相似文献   

6.
The Weibull distribution is widely used due to its versatility and relative simplicity. In our paper, the non informative priors for the ratio of the scale parameters of two Weibull models are provided. The asymptotic matching of coverage probabilities of Bayesian credible intervals is considered, with the corresponding frequentist coverage probabilities. We developed the various priors for the ratio of two scale parameters using the following matching criteria: quantile matching, matching of distribution function, highest posterior density matching, and inversion of test statistics. One particular prior, which meets all the matching criteria, is found. Next, we derive the reference priors for groups of ordering. We see that all the reference priors satisfy a first-order matching criterion and that the one-at-a-time reference prior is a second-order matching prior. A simulation study is performed and an example given.  相似文献   

7.
The reference priors of Berger and Bernardo (1992) are derived for normal populations with unknown variances when the product of means is of interest. The priors are also shown to be Tibshirani's (1989) matching priors.  相似文献   

8.
The author shows how geostatistical data that contain measurement errors can be analyzed objectively by a Bayesian approach using Gaussian random fields. He proposes a reference prior and two versions of Jeffreys' prior for the model parameters. He studies the propriety and the existence of moments for the resulting posteriors. He also establishes the existence of the mean and variance of the predictive distributions based on these default priors. His reference prior derives from a representation of the integrated likelihood that is particularly convenient for computation and analysis. He further shows that these default priors are not very sensitive to some aspects of the design and model, and that they have good frequentist properties. Finally, he uses a data set of carbon/nitrogen ratios from an agricultural field to illustrate his approach.  相似文献   

9.
For the balanced variance component model when the intraclass correlation coefficient is of interest, Bayesian analysis is often appropriate. Berger and Bernardo’s (1992a) grouped ordering reference prior approach is used to analyze this model. The reference priors are developed and compared for the posterior inference with real and simulated data. We examine whether the reference priors satisfy the probability-matching criterion. Further, the reference prior is shown to be good in the sense of correct frequentist coverage probability of the posterior quantile.  相似文献   

10.
In the context of an objective Bayesian approach to the multinomial model, Dirichlet(a, …, a) priors with a < 1 have previously been shown to be inadequate in the presence of zero counts, suggesting that the uniform prior (a = 1) is the preferred candidate. In the presence of many zero counts, however, this prior may not be satisfactory either. A model selection approach is proposed, allowing for the possibility of zero parameters corresponding to zero count categories. This approach results in a posterior mixture of Dirichlet distributions and marginal mixtures of beta distributions, which seem to avoid the problems that potentially result from the various proposed Dirichlet priors, in particular in the context of extreme data with zero counts.  相似文献   

11.
The authors develop default priors for the Gaussian random field model that includes a nugget parameter accounting for the effects of microscale variations and measurement errors. They present the independence Jeffreys prior, the Jeffreys‐rule prior and a reference prior and study posterior propriety of these and related priors. They show that the uniform prior for the correlation parameters yields an improper posterior. In case of known regression and variance parameters, they derive the Jeffreys prior for the correlation parameters. They prove posterior propriety and obtain that the predictive distributions at ungauged locations have finite variance. Moreover, they show that the proposed priors have good frequentist properties, except for those based on the marginal Jeffreys‐rule prior for the correlation parameters, and illustrate their approach by analyzing a dataset of zinc concentrations along the river Meuse. The Canadian Journal of Statistics 40: 304–327; 2012 © 2012 Statistical Society of Canada  相似文献   

12.
In this paper, we develop noninformative priors for the generalized half-normal distribution when scale and shape parameters are of interest, respectively. Especially, we develop the first and second order matching priors for both parameters. For the shape parameter, we reveal that the second order matching prior is a highest posterior density (HPD) matching prior and a cumulative distribution function (CDF) matching prior. In addition, it matches the alternative coverage probabilities up to the second order. For the scale parameter, we reveal that the second order matching prior is neither a HPD matching prior nor a CDF matching prior. Also, it does not match the alternative coverage probabilities up to the second order. For both parameters, we present that the one-at-a-time reference prior is a second order matching prior. However, Jeffreys’ prior is neither a first nor a second order matching prior. Methods are illustrated with both a simulation study and a real data set.  相似文献   

13.
In this paper, we develop the non-informative priors for the inverse Weibull model when the parameters of interest are the scale and the shape parameters. We develop the first-order and the second-order matching priors for both parameters. For the scale parameter, we reveal that the second-order matching prior is not a highest posterior density (HPD) matching prior, does not match the alternative coverage probabilities up to the second order and is not a cumulative distribution function (CDF) matching prior. Also for the shape parameter, we reveal that the second-order matching prior is an HPD matching prior and a CDF matching prior and also matches the alternative coverage probabilities up to the second order. For both parameters, we reveal that the one-at-a-time reference prior is the second-order matching prior, but Jeffreys’ prior is not the first-order and the second-order matching prior. A simulation study is performed to compare the target coverage probabilities and a real example is given.  相似文献   

14.
The Generalized gamma (GG) distribution plays an important role in statistical analysis. For this distribution, we derive non-informative priors using formal rules, such as Jeffreys prior, maximal data information prior and reference priors. We have shown that these most popular formal rules with natural ordering of parameters, lead to priors with improper posteriors. This problem is overcome by considering a prior averaging approach discussed in Berger et al. [Overall objective priors. Bayesian Analysis. 2015;10(1):189–221]. The obtained hybrid Jeffreys-reference prior is invariant under one-to-one transformations and yields a proper posterior distribution. We obtained good frequentist properties of the proposed prior using a detailed simulation study. Finally, an analysis of the maximum annual discharge of the river Rhine at Lobith is presented.  相似文献   

15.
Bayesian analyses often take for granted the assumption that the posterior distribution has at least a first moment. They often include computed or estimated posterior means. In this note, the authors show an example of a Weibull distribution parameter where the theoretical posterior mean fails to exist for commonly used proper semi–conjugate priors. They also show that posterior moments can fail to exist with commonly used noninformative priors including Jeffreys, reference and matching priors, despite the fact that the posteriors are proper. Moreover, within a broad class of priors, the predictive distribution also has no mean. The authors illustrate the problem with a simulated example. Their results demonstrate that the unwitting use of estimated posterior means may yield unjustified conclusions.  相似文献   

16.
Abstract

This paper investigates the statistical analysis of grouped accelerated temperature cycling test data when the product lifetime follows a Weibull distribution. A log-linear acceleration equation is derived from the Coffin-Manson model. The problem is transformed to a constant-stress accelerated life test with grouped data and multiple acceleration variables. The Jeffreys prior and reference priors are derived. Maximum likelihood estimation and Bayesian estimation with objective priors are obtained by applying the technique of data augmentation. A simulation study shows that both of these two methods perform well when sample size is large, and the Bayesian method gives better performance under small sample sizes.  相似文献   

17.
18.
Integrating a posterior function with respect to its parameters is required to compare the goodness-of-fit among Bayesian models which may have distinct priors or likelihoods. This paper is concerned with two integration methods for very high dimensional functions, using a Markovian Monte Carlo simulation or a Gaussian approximation. Numerical applications include analyses of spatial data in epidemiology and seismology.  相似文献   

19.
We revisit the Flatland paradox proposed by Stone (1976 Stone, M. 1976. Strong inconsistency from uniform priors. Journal of the American Statistical Association 71 (353):11425.[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]), which is an example of non conglomerability. The main novelty in the analysis of the paradox is to consider marginal versus conditional models rather than proper versus improper priors. We show that in the first model a prior distribution should be considered as a probability measure, whereas, in the second one, a prior distribution should be considered in the projective space of measures. This induces two different kinds of limiting arguments which are useful to understand the paradox. We also show that the choice of a flat prior is not adapted to the structure of the parameter space and we consider an improper prior based on reference priors with nuisance parameters for which the Bayesian analysis matches the intuitive reasoning.  相似文献   

20.
First‐order probability matching priors are priors for which Bayesian and frequentist inference, in the form of posterior quantiles, or confidence intervals, agree to a second order of approximation. The authors show that the matching priors developed by Peers (1965) and Tibshirani (1989) are readily and uniquely implemented in a third‐order approximation to the posterior marginal density. The authors further show how strong orthogonality of parameters simplifies the arguments. Several examples illustrate their results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号