首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper,we propose a class of general partially linear varying-coefficient transformation models for ranking data. In the models, the functional coefficients are viewed as nuisance parameters and approximated by B-spline smoothing approximation technique. The B-spline coefficients and regression parameters are estimated by rank-based maximum marginal likelihood method. The three-stage Monte Carlo Markov Chain stochastic approximation algorithm based on ranking data is used to compute estimates and the corresponding variances for all the B-spline coefficients and regression parameters. Through three simulation studies and a Hong Kong horse racing data application, the proposed procedure is illustrated to be accurate, stable and practical.  相似文献   

2.
This paper considers an alternative to iterative procedures used to calculate maximum likelihood estimates of regression coefficients in a general class of discrete data regression models. These models can include both marginal and conditional models and also local regression models. The classical estimation procedure is generally via a Fisher-scoring algorithm and can be computationally intensive for high-dimensional problems. The alternative method proposed here is non-iterative and is likely to be more efficient in high-dimensional problems. The method is demonstrated on two different classes of regression models.  相似文献   

3.
Time-varying coefficient models with autoregressive and moving-average–generalized autoregressive conditional heteroscedasticity structure are proposed for examining the time-varying effects of risk factors in longitudinal studies. Compared with existing models in the literature, the proposed models give explicit patterns for the time-varying coefficients. Maximum likelihood and marginal likelihood (based on a Laplace approximation) are used to estimate the parameters in the proposed models. Simulation studies are conducted to evaluate the performance of these two estimation methods, which is measured in terms of the Kullback–Leibler divergence and the root mean square error. The marginal likelihood approach leads to the more accurate parameter estimates, although it is more computationally intensive. The proposed models are applied to the Framingham Heart Study to investigate the time-varying effects of covariates on coronary heart disease incidence. The Bayesian information criterion is used for specifying the time series structures of the coefficients of the risk factors.  相似文献   

4.
We propose a class of general partially linear additive transformation models (GPLATM) with right-censored survival data in this work. The class of models are flexible enough to cover many commonly used parametric and nonparametric survival analysis models as its special cases. Based on the B spline interpolation technique, we estimate the unknown regression parameters and functions by the maximum marginal likelihood estimation method. One important feature of the estimation procedure is that it does not need the baseline and censoring cumulative density distributions. Some numerical studies illustrate that this procedure can work very well for the moderate sample size.  相似文献   

5.
Gu MG  Sun L  Zuo G 《Lifetime data analysis》2005,11(4):473-488
An important property of Cox regression model is that the estimation of regression parameters using the partial likelihood procedure does not depend on its baseline survival function. We call such a procedure baseline-free. Using marginal likelihood, we show that an baseline-free procedure can be derived for a class of general transformation models under interval censoring framework. The baseline-free procedure results a simplified and stable computation algorithm for some complicated and important semiparametric models, such as frailty models and heteroscedastic hazard/rank regression models, where the estimation procedures so far available involve estimation of the infinite dimensional baseline function. A detailed computational algorithm using Markov Chain Monte Carlo stochastic approximation is presented. The proposed procedure is demonstrated through extensive simulation studies, showing the validity of asymptotic consistency and normality. We also illustrate the procedure with a real data set from a study of breast cancer. A heuristic argument showing that the score function is a mean zero martingale is provided.  相似文献   

6.
A Bayesian elastic net approach is presented for variable selection and coefficient estimation in linear regression models. A simple Gibbs sampling algorithm was developed for posterior inference using a location-scale mixture representation of the Bayesian elastic net prior for the regression coefficients. The penalty parameters are chosen through an empirical method that maximizes the data marginal likelihood. Both simulated and real data examples show that the proposed method performs well in comparison to the other approaches.  相似文献   

7.
This paper studies semiparametric regression analysis of panel count data, which arise naturally when recurrent events are considered. Such data frequently occur in medical follow-up studies and reliability experiments, for example. To explore the nonlinear interactions between covariates, we propose a class of partially linear models with possibly varying coefficients for the mean function of the counting processes with panel count data. The functional coefficients are estimated by B-spline function approximations. The estimation procedures are based on maximum pseudo-likelihood and likelihood approaches and they are easy to implement. The asymptotic properties of the resulting estimators are established, and their finite-sample performance is assessed by Monte Carlo simulation studies. We also demonstrate the value of the proposed method by the analysis of a cancer data set, where the new modeling approach provides more comprehensive information than the usual proportional mean model.  相似文献   

8.
A maximum likelihood estimation procedure is presented for the frailty model. The procedure is based on a stochastic Expectation Maximization algorithm which converges quickly to the maximum likelihood estimate. The usual expectation step is replaced by a stochastic approximation of the complete log-likelihood using simulated values of unobserved frailties whereas the maximization step follows the same lines as those of the Expectation Maximization algorithm. The procedure allows to obtain at the same time estimations of the marginal likelihood and of the observed Fisher information matrix. Moreover, this stochastic Expectation Maximization algorithm requires less computation time. A wide variety of multivariate frailty models without any assumption on the covariance structure can be studied. To illustrate this procedure, a Gaussian frailty model with two frailty terms is introduced. The numerical results based on simulated data and on real bladder cancer data are more accurate than those obtained by using the Expectation Maximization Laplace algorithm and the Monte-Carlo Expectation Maximization one. Finally, since frailty models are used in many fields such as ecology, biology, economy, …, the proposed algorithm has a wide spectrum of applications.  相似文献   

9.
The shared frailty models allow for unobserved heterogeneity or for statistical dependence between observed survival data. The most commonly used estimation procedure in frailty models is the EM algorithm, but this approach yields a discrete estimator of the distribution and consequently does not allow direct estimation of the hazard function. We show how maximum penalized likelihood estimation can be applied to nonparametric estimation of a continuous hazard function in a shared gamma-frailty model with right-censored and left-truncated data. We examine the problem of obtaining variance estimators for regression coefficients, the frailty parameter and baseline hazard functions. Some simulations for the proposed estimation procedure are presented. A prospective cohort (Paquid) with grouped survival data serves to illustrate the method which was used to analyze the relationship between environmental factors and the risk of dementia.  相似文献   

10.
The main objective of this paper is to develop convenient Bayesian techniques for estimation and forecasting which can be used to analyze multiple (multivariate) autoregressive moving average processes. Based on the conditional likelihood function and the least squares estimates of the residuals, the marginal posterior distribution of the coefficients of the model is approximated by a matrix t distribution, the marginal posterior distribution of the precision matrix is approximated by a Wishart distribution, and the predictive distribution is approximated by a multivariate t distribution. Some numerical examples are given to demonstrate the idea of using the proposed techniques to analyze different types of multiple ARMA models.  相似文献   

11.
In this paper, we consider inference aspects of skew-normal semiparametric varying coefficient models which provide a useful extension of the normal regression models. The maximum likelihood estimation based on B-spline is proposed. Further, we discuss the score test for homogeneity of the variance in skew-normal semiparametric varying coefficient models. Their asymptotical properties are investigated. Some simulated examples are used to examine our proposed methods.  相似文献   

12.
In applications, multivariate failure time data appears when each study subject may potentially experience several types of failures or recurrences of a certain phenomenon, or failure times may be clustered. Three types of marginal accelerated failure time models dealing with multiple events data, recurrent events data and clustered events data are considered. We propose a unified empirical likelihood inferential procedure for the three types of models based on rank estimation method. The resulting log-empirical likelihood ratios are shown to possess chi-squared limiting distributions. The properties can be applied to do tests and construct confidence regions without the need to solve the rank estimating equations nor to estimate the limiting variance-covariance matrices. The related computation is easy to implement. The proposed method is illustrated by extensive simulation studies and a real example.  相似文献   

13.
Abstract. This paper focuses on marginal regression models for correlated binary responses when estimation of the association structure is of primary interest. A new estimating function approach based on orthogonalized residuals is proposed. A special case of the proposed procedure allows a new representation of the alternating logistic regressions method through marginal residuals. The connections between second‐order generalized estimating equations, alternating logistic regressions, pseudo‐likelihood and other methods are explored. Efficiency comparisons are presented, with emphasis on variable cluster size and on the role of higher‐order assumptions. The new method is illustrated with an analysis of data on impaired pulmonary function.  相似文献   

14.
Inference in generalized linear mixed models with multivariate random effects is often made cumbersome by the high-dimensional intractable integrals involved in the marginal likelihood. This article presents an inferential methodology based on the GEE approach. This method involves the approximations of the marginal likelihood and joint moments of the variables. It is also proposed an approximate Akaike and Bayesian information criterions based on the approximate marginal likelihood using the estimation of the parameters by the GEE approach. The different results are illustrated with a simulation study and with an analysis of real data from health-related quality of life.  相似文献   

15.
We consider varying coefficient models, which are an extension of the classical linear regression models in the sense that the regression coefficients are replaced by functions in certain variables (for example, time), the covariates are also allowed to depend on other variables. Varying coefficient models are popular in longitudinal data and panel data studies, and have been applied in fields such as finance and health sciences. We consider longitudinal data and estimate the coefficient functions by the flexible B-spline technique. An important question in a varying coefficient model is whether an estimated coefficient function is statistically different from a constant (or zero). We develop testing procedures based on the estimated B-spline coefficients by making use of nice properties of a B-spline basis. Our method allows longitudinal data where repeated measurements for an individual can be correlated. We obtain the asymptotic null distribution of the test statistic. The power of the proposed testing procedures are illustrated on simulated data where we highlight the importance of including the correlation structure of the response variable and on real data.  相似文献   

16.
Estimation of finite mixture models when the mixing distribution support is unknown is an important problem. This article gives a new approach based on a marginal likelihood for the unknown support. Motivated by a Bayesian Dirichlet prior model, a computationally efficient stochastic approximation version of the marginal likelihood is proposed and large-sample theory is presented. By restricting the support to a finite grid, a simulated annealing method is employed to maximize the marginal likelihood and estimate the support. Real and simulated data examples show that this novel stochastic approximation and simulated annealing procedure compares favorably with existing methods.  相似文献   

17.
In this work, we consider empirical likelihood inference for general transformation models with right censored data. The models are a class of flexible semiparametric survival models and include many popular survival models as their special cases. Based on the marginal likelihood function, we define an empirical likelihood ratio statistic. Under some regularity conditions, we show that the empirical likelihood ratio statistic asymptotically follows a standard chi-squared distribution. Through some simulation studies and a real data application, we show that our proposed procedure can work fairly well even for relatively small sample size and high censoring.  相似文献   

18.
In most software reliability models which utilize the nonhomogeneous Poisson process (NHPP), the intensity function for the counting process is usually assumed to be continuous and monotone. However, on account of various practical reasons, there may exist some change points in the intensity function and thus the assumption of continuous and monotone intensity function may be unrealistic in many real situations. In this article, the Bayesian change-point approach using beta-mixtures for modeling the intensity function with possible change points is proposed. The hidden Markov model with non constant transition probabilities is applied to the beta-mixture for detecting the change points of the parameters. The estimation and interpretation of the model is illustrated using the Naval Tactical Data System (NTDS) data. The proposed change point model will be also compared with the competing models via marginal likelihood. It can be seen that the proposed model has the highest marginal likelihood and outperforms the competing models.  相似文献   

19.
Abstract

In this article, a new composite quantile regression estimation (CQR) approach is proposed for partially linear varying coefficient models (PLVCM) under composite quantile loss function with B-spline approximations. The major advantage of the proposed procedures over the existing ones is easy to implement using existing software, and it requires no specification of the error distributions. Under the regularity conditions, the consistency and asymptotic normality of the estimators are also derived. Finally, a simulation study and a real data application are undertaken to assess the finite sample performance of the proposed estimation procedure.  相似文献   

20.
Existing research on mixtures of regression models are limited to directly observed predictors. The estimation of mixtures of regression for measurement error data imposes challenges for statisticians. For linear regression models with measurement error data, the naive ordinary least squares method, which directly substitutes the observed surrogates for the unobserved error-prone variables, yields an inconsistent estimate for the regression coefficients. The same inconsistency also happens to the naive mixtures of regression estimate, which is based on the traditional maximum likelihood estimator and simply ignores the measurement error. To solve this inconsistency, we propose to use the deconvolution method to estimate the mixture likelihood of the observed surrogates. Then our proposed estimate is found by maximizing the estimated mixture likelihood. In addition, a generalized EM algorithm is also developed to find the estimate. The simulation results demonstrate that the proposed estimation procedures work well and perform much better than the naive estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号