首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Journal of Combinatorial Optimization - A set S of vertices in a graph G is a dominating set if every vertex not in S is adjacent to a vertex in S. If, in addition, S is an independent...  相似文献   

2.
A vertex in G is said to dominate itself and its neighbors. A subset S of vertices is a dominating set if S dominates every vertex of G. A paired-dominating set is a dominating set whose induced subgraph contains a perfect matching. The paired-domination number of a graph G, denoted by γ pr(G), is the minimum cardinality of a paired-dominating set in G. A subset S?V(G) is a double dominating set of G if S dominates every vertex of G at least twice. The minimum cardinality of a double dominating set of G is the double domination number γ ×2(G). A claw-free graph is a graph that does not contain K 1,3 as an induced subgraph. Chellali and Haynes (Util. Math. 67:161–171, 2005) showed that for every claw-free graph G, we have γ pr(G)≤γ ×2(G). In this paper we extend this result by showing that for r≥2, if G is a connected graph that does not contain K 1,r as an induced subgraph, then $\gamma_{\mathrm{pr}}(G)\le ( \frac{2r^{2}-6r+6}{r(r-1)} )\gamma_{\times2}(G)$ .  相似文献   

3.
Let G be a graph with vertex set V and no isolated vertices, and let S be a dominating set of V. The set S is a semitotal dominating set of G if every vertex in S is within distance 2 of another vertex of S. And, S is a semipaired dominating set of G if S can be partitioned into 2-element subsets such that the vertices in each 2-set are at most distance two apart. The semitotal domination number \(\gamma _\mathrm{t2}(G)\) is the minimum cardinality of a semitotal dominating set of G, and the semipaired domination number \(\gamma _\mathrm{pr2}(G)\) is the minimum cardinality of a semipaired dominating set of G. For a graph without isolated vertices, the domination number \(\gamma (G)\), the total domination \(\gamma _t(G)\), and the paired domination number \(\gamma _\mathrm{pr}(G)\) are related to the semitotal and semipaired domination numbers by the following inequalities: \(\gamma (G) \le \gamma _\mathrm{t2}(G) \le \gamma _t(G) \le \gamma _\mathrm{pr}(G)\) and \(\gamma (G) \le \gamma _\mathrm{t2}(G) \le \gamma _\mathrm{pr2}(G) \le \gamma _\mathrm{pr}(G) \le 2\gamma (G)\). Given two graph parameters \(\mu \) and \(\psi \) related by a simple inequality \(\mu (G) \le \psi (G)\) for every graph G having no isolated vertices, a graph is \((\mu ,\psi )\)-perfect if every induced subgraph H with no isolated vertices satisfies \(\mu (H) = \psi (H)\). Alvarado et al. (Discrete Math 338:1424–1431, 2015) consider classes of \((\mu ,\psi )\)-perfect graphs, where \(\mu \) and \(\psi \) are domination parameters including \(\gamma \), \(\gamma _t\) and \(\gamma _\mathrm{pr}\). We study classes of perfect graphs for the possible combinations of parameters in the inequalities when \(\gamma _\mathrm{t2}\) and \(\gamma _\mathrm{pr2}\) are included in the mix. Our results are characterizations of several such classes in terms of their minimal forbidden induced subgraphs.  相似文献   

4.
Let \(G=(V,E)\) be a simple graph without isolated vertices. A set \(S\) of vertices is a total dominating set of a graph \(G\) if every vertex of \(G\) is adjacent to some vertex in \(S\). A paired dominating set of \(G\) is a dominating set whose induced subgraph has a perfect matching. The minimum cardinality of a total dominating set (respectively, a paired dominating set) is the total domination number (respectively, the paired domination number). Hu and Xu (J Combin Optim 27(2):369–378, 2014) computed the exact values of total and paired domination numbers of Cartesian product \(C_n\square C_m\) for \(m=3,4\). Graph bundles generalize the notions of covering graphs and Cartesian products. In this paper, we generalize these results given in Hu and Xu (J Combin Optim 27(2):369–378, 2014) to graph bundle and compute the total domination number and the paired domination number of \(C_m\) bundles over a cycle \(C_n\) for \(m=3,4\). Moreover, we give the exact value for the total domination number of Cartesian product \(C_n\square C_5\) and some upper bounds of \(C_m\) bundles over a cycle \(C_n\) where \(m\ge 5\).  相似文献   

5.
For k??1 an integer, a set S of vertices in a graph G with minimum degree at least?k is a k-tuple total dominating set of G if every vertex of G is adjacent to at least k vertices in S. The minimum cardinality of a k-tuple total dominating set of G is the k-tuple total domination number of G. When k=1, the k-tuple total domination number is the well-studied total domination number. In this paper, we establish upper and lower bounds on the k-tuple total domination number of the cross product graph G×H for any two graphs G and H with minimum degree at least?k. In particular, we determine the exact value of the k-tuple total domination number of the cross product of two complete graphs.  相似文献   

6.
Let \(G\) be a graph with no isolated vertex. In this paper, we study a parameter that is a relaxation of arguably the most important domination parameter, namely the total domination number, \(\gamma _t(G)\). A set \(S\) of vertices in \(G\) is a disjunctive total dominating set of \(G\) if every vertex is adjacent to a vertex of \(S\) or has at least two vertices in \(S\) at distance \(2\) from it. The disjunctive total domination number, \(\gamma ^d_t(G)\), is the minimum cardinality of such a set. We observe that \(\gamma ^d_t(G) \le \gamma _t(G)\). We prove that if \(G\) is a connected graph of order \(n \ge 8\), then \(\gamma ^d_t(G) \le 2(n-1)/3\) and we characterize the extremal graphs. It is known that if \(G\) is a connected claw-free graph of order \(n\), then \(\gamma _t(G) \le 2n/3\) and this upper bound is tight for arbitrarily large \(n\). We show this upper bound can be improved significantly for the disjunctive total domination number. We show that if \(G\) is a connected claw-free graph of order \(n > 14\), then \(\gamma ^d_t(G) \le 4n/7\) and we characterize the graphs achieving equality in this bound.  相似文献   

7.
The problem of monitoring an electric power system by placing as few measurement devices in the system as possible is closely related to the well-known domination problem in graphs. Following a set of rules for power system monitoring, a set S of vertices is defined to be a power dominating set of a graph if every vertex and every edge in the system is monitored by the set S. The minimum cardinality of a power dominating set of G is the power domination number γ p (G). In this paper, we investigate the power domination number for the generalized Petersen graphs, presenting both upper bounds for such graphs and exact results for a subfamily of generalized Petersen graphs.  相似文献   

8.
A set S of vertices of a graph G=(V,E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γ t (G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number sdgt(G)\mathrm {sd}_{\gamma_{t}}(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. In this paper we prove that sdgt(G) £ gt(G)+1\mathrm {sd}_{\gamma_{t}}(G)\leq\gamma_{t}(G)+1 for some classes of graphs.  相似文献   

9.
A set S of vertices of a graph G is an outer-connected dominating set if every vertex not in S is adjacent to some vertex in S and the subgraph induced by V?S is connected. The outer-connected domination number $\widetilde{\gamma}_{c}(G)$ is the minimum size of such a set. We prove that if δ(G)≥2 and diam?(G)≤2, then $\widetilde{\gamma}_{c}(G)\le (n+1)/2$ , and we study the behavior of $\widetilde{\gamma}_{c}(G)$ under an edge addition.  相似文献   

10.
A set S of vertices of a graph G=(V,E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γ t (G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number $\mathrm{sd}_{\gamma_{t}}(G)$ is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. Favaron, Karami, Khoeilar and Sheikholeslami (J. Comb. Optim. 20:76–84, 2010a) conjectured that: For any connected graph G of order n≥3, $\mathrm{sd}_{\gamma_{t}}(G)\le \gamma_{t}(G)+1$ . In this paper we use matching to prove this conjecture for graphs with no 3-cycle and 5-cycle. In particular this proves the conjecture for bipartite graphs.  相似文献   

11.

The minimum dominating set of graph has been widely used in many fields, but its solution is NP-hard. The complexity and approximation accuracy of existing algorithms need to be improved. In this paper, we introduce rough set theory to solve the dominating set of undirected graph. First, the adjacency matrix of undirected graph is used to establish an induced decision table, and the minimum dominating set of undirected graph is equivalent to the minimum attribute reduction of its induced decision table. Second, based on rough set theory, the significance of attributes (i.e., vertices) based on the approximate quality is defined in induced decision table, and a heuristic approximation algorithm of minimum dominating set is designed by using the significance of attributes (i.e., vertices) as heuristic information. This algorithm uses forward and backward search mechanism, which not only ensures to find a minimal dominating set, but also improves the approximation accuracy of minimum dominating set. In addition, a cumulative strategy is used to calculate the positive region of induced decision table, which effectively reduces the computational complexity. Finally, the experimental results on public datasets show that our algorithm has obvious advantages in running time and approximation accuracy of the minimum dominating set.

  相似文献   

12.
Let G=(V,E) be a graph. A set SV is a restrained dominating set if every vertex in VS is adjacent to a vertex in S and to a vertex in VS. The restrained domination number of G, denoted γ r (G), is the smallest cardinality of a restrained dominating set of G. A graph G is said to be cubic if every vertex has degree three. In this paper, we study restrained domination in cubic graphs. We show that if G is a cubic graph of order n, then gr(G) 3 \fracn4\gamma_{r}(G)\geq \frac{n}{4} , and characterize the extremal graphs achieving this lower bound. Furthermore, we show that if G is a cubic graph of order n, then gr(G) £ \frac5n11.\gamma _{r}(G)\leq \frac{5n}{11}. Lastly, we show that if G is a claw-free cubic graph, then γ r (G)=γ(G).  相似文献   

13.
A set S of vertices of a graph G is a total outer-connected dominating set if every vertex in V(G) is adjacent to some vertex in S and the subgraph induced by V?S is connected. The total outer-connected domination number γ toc (G) is the minimum size of such a set. We give some properties and bounds for γ toc in general graphs and in trees. For graphs of order n, diameter 2 and minimum degree at least 3, we show that $\gamma_{toc}(G)\le \frac{2n-2}{3}$ and we determine the extremal graphs.  相似文献   

14.
In this paper we continue the study of Roman dominating functions in graphs. A signed Roman dominating function (SRDF) on a graph G=(V,E) is a function f:V→{?1,1,2} satisfying the conditions that (i) the sum of its function values over any closed neighborhood is at least one and (ii) for every vertex u for which f(u)=?1 is adjacent to at least one vertex v for which f(v)=2. The weight of a SRDF is the sum of its function values over all vertices. The signed Roman domination number of G is the minimum weight of a SRDF in G. We present various lower and upper bounds on the signed Roman domination number of a graph. Let G be a graph of order n and size m with no isolated vertex. We show that $\gamma _{\mathrm{sR}}(G) \ge\frac{3}{\sqrt{2}} \sqrt{n} - n$ and that γ sR(G)≥(3n?4m)/2. In both cases, we characterize the graphs achieving equality in these bounds. If G is a bipartite graph of order n, then we show that $\gamma_{\mathrm{sR}}(G) \ge3\sqrt{n+1} - n - 3$ , and we characterize the extremal graphs.  相似文献   

15.
For a fixed integer \(b>1\), a set \(D\subseteq V\) is called a b-disjunctive dominating set of the graph \(G=(V,E)\) if for every vertex \(v\in V{\setminus }D\), v is either adjacent to a vertex of D or has at least b vertices in D at distance 2 from it. The Minimum b-Disjunctive Domination Problem (MbDDP) is to find a b-disjunctive dominating set of minimum cardinality. The cardinality of a minimum b-disjunctive dominating set of G is called the b-disjunctive domination number of G, and is denoted by \(\gamma _{b}^{d}(G)\). Given a positive integer k and a graph G, the b-Disjunctive Domination Decision Problem (bDDDP) is to decide whether G has a b-disjunctive dominating set of cardinality at most k. In this paper, we first show that for a proper interval graph G, \(\gamma _{b}^{d}(G)\) is equal to \(\gamma (G)\), the domination number of G for \(b \ge 3\) and observe that \(\gamma _{b}^{d}(G)\) need not be equal to \(\gamma (G)\) for \(b=2\). We then propose a polynomial time algorithm to compute a minimum cardinality b-disjunctive dominating set of a proper interval graph for \(b=2\). Next we tighten the NP-completeness of bDDDP by showing that it remains NP-complete even in chordal graphs. We also propose a \((\ln ({\varDelta }^{2}+(b-1){\varDelta }+b)+1)\)-approximation algorithm for MbDDP, where \({\varDelta }\) is the maximum degree of input graph \(G=(V,E)\) and prove that MbDDP cannot be approximated within \((1-\epsilon ) \ln (|V|)\) for any \(\epsilon >0\) unless NP \(\subseteq \) DTIME\((|V|^{O(\log \log |V|)})\). Finally, we show that MbDDP is APX-complete for bipartite graphs with maximum degree \(\max \{b,4\}\).  相似文献   

16.
In the domination game, two players, the Dominator and Staller, take turns adding vertices of a fixed graph to a set, at each turn increasing the number of vertices dominated by the set, until the final set \(A_*\) dominates the whole graph. The Dominator plays to minimise the size of the set \(A_*\) while the Staller plays to maximise it. A graph is \(D\)-trivial if when the Dominator plays first and both players play optimally, the set \(A_*\) is a minimum dominating set of the graph. A graph is \(S\)-trivial if the same is true when the Staller plays first. We consider the problem of characterising \(D\)-trivial and \(S\)-trivial graphs. We give complete characterisations of \(D\)-trivial forests and of \(S\)-trivial forests. We also show that \(2\)-connected \(D\)-trivial graphs cannot have large girth, and conjecture that the same holds without the connectivity condition.  相似文献   

17.
Let \(G\) be a finite and simple graph with vertex set \(V(G)\). A signed total Roman dominating function (STRDF) on a graph \(G\) is a function \(f:V(G)\rightarrow \{-1,1,2\}\) satisfying the conditions that (i) \(\sum _{x\in N(v)}f(x)\ge 1\) for each vertex \(v\in V(G)\), where \(N(v)\) is the neighborhood of \(v\), and (ii) every vertex \(u\) for which \(f(u)=-1\) is adjacent to at least one vertex \(v\) for which \(f(v)=2\). The weight of an SRTDF \(f\) is \(\sum _{v\in V(G)}f(v)\). The signed total Roman domination number \(\gamma _{stR}(G)\) of \(G\) is the minimum weight of an STRDF on \(G\). In this paper we initiate the study of the signed total Roman domination number of graphs, and we present different bounds on \(\gamma _{stR}(G)\). In addition, we determine the signed total Roman domination number of some classes of graphs.  相似文献   

18.
Based on the power observation rules, the problem of monitoring a power utility network can be transformed into the graph-theoretic power domination problem, which is an extension of the well-known domination problem. A set \(S\) is a power dominating set (PDS) of a graph \(G=(V,E)\) if every vertex \(v\) in \(V\) can be observed under the following two observation rules: (1) \(v\) is dominated by \(S\), i.e., \(v \in S\) or \(v\) has a neighbor in \(S\); and (2) one of \(v\)’s neighbors, say \(u\), and all of \(u\)’s neighbors, except \(v\), can be observed. The power domination problem involves finding a PDS with the minimum cardinality in a graph. Similar to message passing protocols, a PDS can be considered as a dominating set with propagation that applies the second rule iteratively. This study investigates a generalized power domination problem, which limits the number of propagation iterations to a given positive integer; that is, the second rule is applied synchronously with a bounded time constraint. To solve the problem in block graphs, we propose a linear time algorithm that uses a labeling approach. In addition, based on the concept of time constraints, we provide the first nontrivial lower bound for the power domination problem.  相似文献   

19.
In this paper, we study the problem of computing a minimum weight k-fold dominating set (MWkDS) or a minimum weight k-fold connected dominating set (MWkCDS) in a unit ball graph (UBG). Using slab decomposition and dynamic programming, we give two exact algorithms for the computation of MWkDS and MWkCDS which can be executed in polynomial time if the thickness of the graph is bounded above.  相似文献   

20.
Total and paired domination numbers of toroidal meshes   总被引:1,自引:1,他引:0  
Let G be a graph without isolated vertices. The total domination number of G is the minimum number of vertices that can dominate all vertices in G, and the paired domination number of G is the minimum number of vertices in a dominating set whose induced subgraph contains a perfect matching. This paper determines the total domination number and the paired domination number of the toroidal meshes, i.e., the Cartesian product of two cycles C n and C m for any n≥3 and m∈{3,4}, and gives some upper bounds for n,m≥5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号