首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.

The Student-Project Allocation problem with lecturer preferences over Students (spa-s) involves assigning students to projects based on student preferences over projects, lecturer preferences over students, and the maximum number of students that each project and lecturer can accommodate. This classical model assumes that each project is offered by one lecturer and that preference lists are strictly ordered. Here, we study a generalisation of spa-s where ties are allowed in the preference lists of students and lecturers, which we refer to as the Student-Project Allocation problem with lecturer preferences over Students with Ties (spa-st). We investigate stable matchings under the most robust definition of stability in this context, namely super-stability. We describe the first polynomial-time algorithm to find a super-stable matching or to report that no such matching exists, given an instance of spa-st. Our algorithm runs in O(L) time, where L is the total length of all the preference lists. Finally, we present results obtained from an empirical evaluation of the linear-time algorithm based on randomly-generated spa-st instances. Our main finding is that, whilst super-stable matchings can be elusive when ties are present in the students’ and lecturers’ preference lists, the probability of such a matching existing is significantly higher if ties are restricted to the lecturers’ preference lists.

  相似文献   

2.
3.
Consider a scheduling problem in which a set of tasks needs to be scheduled on m parallel processors. Each task \(T_i\) consists of a set of jobs with interjob communication demands, represented by a weighted, undirected graph \(G_i\). The processors are assumed to be interconnected by a shared communication channel, which can be used by jobs to communicate among each other while being processed in parallel. In each time step, the scheduler assigns jobs to the processors and allows any processed job to use a certain capacity of the channel in order to satisfy (parts of) its communication demands to adjacent jobs processed in the same step. The goal is to find a schedule with minimum length in which the communication demands of all jobs are satisfied. We show that this problem is NP-hard in the strong sense even if the number of processors is constant and the underlying graph is a single path or a forest with arbitrary constant maximum degree. Consequently, we design and analyze approximation algorithms with asymptotic approximation ratio \(\min \{1.8, 1.5 \frac{m}{m-1}\}+1\) if the underlying graph G, the union of the \(G_i\), is a forest. For general graphs it is \(\min \left\{ 1.8, \frac{1.5m}{m-1}\right\} \cdot \left( \text {arb}(G) + \frac{5}{3}\right) \), where \(\text {arb}(G)\) denotes the arboricity of G.  相似文献   

4.
We study an online scheduling problem with rejection on \(m\ge 2\) identical machines, in which we deal with unit size jobs. Each arriving job has a rejection value (a rejection cost or penalty for minimization problems, and a rejection profit for maximization problems) associated with it. A buffer of size \(K\) is available to store \(K\) jobs. A job which is not stored in the buffer must be either assigned to a machine or rejected. Upon the arrival of a new job, the job can be stored in the buffer if there is a free slot (possibly created by evicting other jobs and assigning or rejecting every evicted job). At termination, the buffer must be emptied. We study four variants of the problem, as follows. We study the makespan minimization problem, where the goal is to minimize the sum of the makespan and the penalty of rejected jobs, and the \(\ell _p\) norm minimization problem, where the goal is to minimize the sum of the \(\ell _p\) norm of the vector of machine completion times and the penalty of rejected jobs. We also study two maximization problems, where the goal in the first version is to maximize the sum of the minimum machine load (the cover value of the machines) and the total rejection profit, and in the second version the goal is to maximize a function of the machine completion times (which measures the balance of machine loads) and the total rejection profit. We show that an optimal solution (an exact solution for the offline problem) can always be obtained in this environment, and determine the required buffer size. Specifically, for all four variants we present optimal algorithms with \(K=m-1\) and prove that in each case, using a buffer of size at most \(m-2\) does not allow the design of an optimal algorithm, which makes our algorithms optimal in this respect as well. The lower bounds hold even for the special case where the rejection value is equal for all input jobs.  相似文献   

5.
6.
7.
8.
9.
10.
In this paper, we study on-line scheduling problems on a batch machine with the assumption that all jobs have their processing times in [p, (1+φ)p], where p>0 and \(\phi=(\sqrt{5}-1)/2\). Jobs arrive over time. First, we deal with the on-line problem on a bounded batch machine with the objective to minimize makespan. A class of algorithms with competitive ratio \((\sqrt{5}+1)/2\) are given. Then we consider the scheduling on an unbounded batch machine to minimize the time by which all jobs have been delivered, and provide a class of on-line algorithms with competitive ratio \((\sqrt{5}+1)/2\). The two class of algorithms are optimal for the problems studied here.  相似文献   

11.
12.
13.
14.

This paper studies the single machine scheduling problem with availability constraints and optional job rejection. We consider the non-resumable and resumable variants, and show that the problems remain ordinary NP-hard, even with the rejection possibility extension, by presenting pseudo-polynomial dynamic-programming (DP) solutions. We also present an enhanced running time implementation of the algorithm of Kellerer and Strusevich (Algorithmica 57(4):769–795, 2010) for the resumable scenario without job rejection. This solution is adapted to efficiently solve the machine non-availability problem with a floating interval and the problem of two competing agents on a single machine, with and without optional job rejection. Numerical experiments support the efficiency of our DP implementation.

  相似文献   

15.
16.
Abstract

In this study, we develop understanding of management of international manufacturing by a combined analysis of manufacturing firms’ plant networks and roles of individual plants within them. We elaborate the framework of Ferdows (1989 Ferdows, K. 1989. “Mapping International Factory Networks.” In Managing international manufacturing, edited by K. Ferdows, 321. Amsterdam, The Netherlands: Elsevier Publishers. [Google Scholar]) at plant and network levels by analyzing data collected from five plant networks of global manufacturing companies and propose an enhanced framework consisting of four main role types with eleven plant roles, which have implications on the network level. The findings give interesting and novel insights into management of international manufacturing; we conclude that plant roles are more complex than conventionally considered and understanding of international manufacturing requires elaborated analysis at both plant and network levels.  相似文献   

17.
In this paper, we consider the off-line and on-line two-machine flow-shop scheduling problems with rejection. The objective is to minimize the sum of the makespan of accepted jobs and the total rejection penalty of rejected jobs. For the off-line version, Shabtay and Gasper (Comput Oper Res 39:1087–1096, 2012) showed that this problem is NP-hard and then provided a pseudo-polynomial-time algorithm, two 2-approximation algorithms and a fully polynomial-time approximation scheme. We further study some special cases in this paper. We show that this problem is still NP-hard even when all jobs have the same processing time on one of the machines or all jobs have the same rejection penalty. Furthermore, we also showed that this problem can be solved in polynomialtime algorithm when all jobs satisfy the agreeable condition on their processing times and rejection penalties. For the on-line version without rejection, Chen and Woeginger [in: Du DZ, Pardalos PM (eds.) Minimax and Applications, 1995] showed that the competitive ratio of any determined on-line algorithm is at least 2. We further show that the competitive ratio of any determined on-line algorithm is at least 2 even when all jobs have the same processing time on the first machine. Finally, for the on-line version with rejection, we present a class of on-line algorithms with the best-possible competitive ratio 2.  相似文献   

18.
We consider the online (over time) scheduling on a single unbounded parallel-batch machine with job processing time compatibilities to minimize makespan. In the problem, a constant \(\alpha >0\) is given in advance. Each job \(J_{j}\) has a normal processing time \(p_j\). Two jobs \(J_i\) and \(J_j\) are compatible if \(\max \{p_i, p_j\} \le (1+\alpha )\cdot \min \{p_i, p_j\}\). In the problem, mutually compatible jobs can form a batch being processed on the machine. The processing time of a batch is equal to the maximum normal processing time of the jobs in this batch. For this problem, we provide an optimal online algorithm with a competitive ratio of \(1+\beta _\alpha \), where \(\beta _\alpha \) is the positive root of the equation \((1+\alpha )x^{2}+\alpha x=1+\alpha \).  相似文献   

19.
In this paper we consider two semi-online scheduling problems with rejection on two identical machines. A sequence of independent jobs are given and each job is characterized by its size (processing time) and its penalty, in the sense that, jobs arrive one by one and can be either rejected by paying a certain penalty or assigned to some machine. No preemption is allowed. The objective is to minimize the sum of the makespan of schedule, which is yielded by all accepted jobs and the total penalties of all rejected ones. In the first problem one can reassign several scheduled jobs in rejection tache, in the second a buffer with length k is available in rejection tache. Two optimal algorithms both with competitive ratio $\frac{3}{2}$ are presented.  相似文献   

20.
We study the online scheduling problem on m identical parallel machines to minimize makespan, i.e., the maximum completion time of the jobs, where m is given in advance and the jobs arrive online over time. We assume that the jobs, which arrive at some nonnegative real times, are of equal-length and are restricted by chain precedence constraints. Moreover, the jobs arriving at distinct times are independent, and so, only the jobs arriving at a common time are restricted by the chain precedence constraints. In the literature, a best possible online algorithm of a competitive ratio 1.3028 is given for the case \(m=2\). But the problem is unaddressed for \(m\ge 3\). In this paper, we present a best possible online algorithm for the problem with \(m\ge 3\), where the algorithm has a competitive ratio of 1.3028 for \(3\le m\le 5\) and 1.3146 for \(m\ge 6\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号