首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This paper addresses the resource-constrained project scheduling problem with uncertain activity durations. An adaptive robust optimization model is proposed to derive the resource allocation decisions that minimize the worst-case makespan, under general polyhedral uncertainty sets. The properties of the model are analyzed, assuming that the activity durations are subject to interval uncertainty where the level of robustness is controlled by a protection factor related to the risk aversion of the decision maker. A general decomposition approach is proposed to solve the robust counterpart of the resource-constrained project scheduling problem, further tailored to address the uncertainty set with the protection factor. An extensive computational study is presented on benchmark instances adapted from the PSPLIB.  相似文献   

3.

In this paper, the job shop scheduling problem is considered with the objective of minimization of makespan time. We first reviewed the literature on job shop scheduling using meta-heuristics. Then a simulated annealing algorithm is presented for scheduling in a job shop. To create neighbourhoods, three perturbation schemes, viz. pairwise exchange, insertion, and random insertion are used, and the effect of them on the final schedule is also compared. The proposed simulated annealing algorithm is compared with existing genetic algorithms and the comparative results are presented. For comparative evaluation, a wide variety of data sets are used. The proposed algorithm is found to perform well for scheduling in the job shop.  相似文献   

4.
工程现场的空间资源是制约工程活动开展的重要影响因素。本文研究考虑空间干涉的工程调度优化问题,定义作业空间干涉的度量方式和作业效率函数,建立工程调度的工期-成本双目标优化模型。针对问题特征设计相对延迟编码方式和解码机制,采用NSGA-II算法求解模型。以某工程案例为研究对象,通过与传统方法对比实验验证了模型和算法的有效性,接着分析了算法的最大延迟时间参数对算法性能的影响。实验结果表明,本文提出的模型和算法能有效提升工程进度和成本目标。  相似文献   

5.
This is a study of single and parallel machine scheduling problems with controllable processing time for each job. The processing time for job j depends on the position of the job in the schedule and is a function of the number of resource units allocated to its processing. Processing time functions and processing cost functions are allowed to be nonlinear. The scheduling problems considered here have important applications in industry and include many of the existing scheduling models as special cases. For the single machine problem, the objective is minimization of total compression costs plus a scheduling measure. The scheduling measures include makespan, total flow time, total differences in completion times, total differences in waiting times, and total earliness and tardiness with a common due date for all jobs. Except when the total earliness and tardiness measure is involved, each case the problem is solved efficiently. Under an assumption typically satisfied in just-in-time systems, the problem with total earliness and tardiness measure is also solved efficiently. Finally, for a large class of processing time functions; parallel machine problems with total flow time and total earliness and tardiness measures are solved efficiently. In each case we reduce the problem to a transportation problem.  相似文献   

6.

This paper addresses the two-machine bicriteria dynamic flowshop problem where setup time of a job is separated from its processing time and is sequenced independently. The performance considered is the simultaneous minimization of total flowtime and makespan, which is more effective in reducing the total scheduling cost compared to the single objective. A frozen-event procedure is first proposed to transform a dynamic scheduling problem into a static one. To solve the transformed static scheduling problem, an integer programming model with N 2 + 5N variables and 7N constraints is formulated. Because the problem is known to be NP-complete, a heuristic algorithm with the complexity of O (N 3) is provided. A decision index is developed as the basis for the heuristic. Experimental results show that the proposed heuristic algorithm is effective and efficient. The average solution quality of the heuristic algorithm is above 99%. A 15-job case requires only 0.0235 s, on average, to obtain a near or even optimal solution.  相似文献   

7.
具有时间转换约束的离散时间-费用权衡问题研究   总被引:1,自引:0,他引:1  
离散时间-费用权衡问题(DTCTP)是项目进度中研究最多的双目标优化问题,它通常以三种形式出现:(1)P1:截止日期问题,在项目截止日期约束下使完成项目的总费用最小;(2)P2:预算问题,在费用预算约束下使项目工期最短;(3)P3:工期-费用曲线问题,找出全部有效的工期-费用模式集合。然而,考虑时间转换约束(TSC)的DTCTP却很少被关注。本文首先介绍时间转换约束的问题描述,在此基础上,建立具有活动类型时间转换约束的DTCTPTSC-P2模型;从实用角度出发,设计求解模型的遗传算法;最后,用一个真实项目实例说明模型的合理性和算法的有效性,对算例分析结果表明,该模型对承包商更准确地进行项目工期-费用权衡决策具有借鉴意义。  相似文献   

8.
针对产品开发项目管理的实际情况,对策略层计划优化方法进行研究。以工作包的工作量估算为基础,以资源投入水平和工期最小化为目标,考虑各种约束条件,提出一种策略层项目计划问题的混合整数规划问题模型。以非支配遗传算法NSGA-II为基础框架,设计了一种改进的双目标遗传算法。该算法针对问题的特点,提出了基于资源平滑的解码算法。参考NSGA-III的关键特征,对拥挤密度计算方法进行改进。通过企业实际项目案例,验证了算法的性能和所提出的策略层项目计划方法的有效性。  相似文献   

9.

This research presents a variation to the permutation flow shop problem where Just In Time (JIT) production requirements are taken into account. The model developed in this research employs dual objectives. In addition to the traditional objective of minimizing the production makespan, minimization of Miltenburg's material usage rate is also incorporated. In this model, multiple units of any product are permitted in the production sequence. However, the minimization of material usage rates attempts to prevent batch scheduling of products and allows unit flow of products as required in demand flow manufacturing. A solution method is proposed for determining an optimal production sequence via an efficient frontier approach and Simulated Annealing (SA). Test problems and specific performance criteria are used to assess the solutions generated by the proposed method. Experimental results presented in this paper show that the use of the efficient frontier and SA provide solutions that approach the optimal solution for the performance measures used in this research.  相似文献   

10.

In this paper, a Multi Objective Genetic Algorithm (MOGA) is proposed to derive the optimal machine-wise priority dispatching rules ( pdrs ) to resolve the conflict among the contending jobs in the Giffler and Thompson (GT) procedure applied for job shop problems. The performance criterion considered is the weighed sum of the multiple objectives minimization of makespan, minimization of total idle time of machines and minimization of total tardiness. The weights assigned for combining the objectives into a scalar fitness function are not constant. They are specified randomly for each evaluation. This in turn leads to the multidirectional search in the proposed MOGA, which in turn mitigates the solution being entrapped in local minima. The applicability and usefulness of the proposed methodology for the scheduling of job shops is illustrated with 28 benchmark problems available in the open literature.  相似文献   

11.
《Omega》2001,29(3):249-272
There have been many survey papers in the area of project scheduling in recent years. These papers have primarily emphasized modeling and algorithmic contributions for specific classes of project scheduling problems, such as net present value (NPV) maximization and makespan minimization, with and without resource constraints. Paralleling these developments has been the research in the area of project scheduling decision support, with its emphasis on data sets, data generation methods, and so on, that are essential to benchmark, evaluate, and compare the new models, algorithms and heuristic techniques. These investigations have extended the frontiers of research and application in all areas of project scheduling and management. In this paper, we survey the vast literature in this area with a perspective that integrates models, data, and optimal and heuristic algorithms, for the major classes of project scheduling problems. We also include recent surveys that have compared commercial project scheduling systems. Finally, we present an overview of web-based decision support systems and discuss the potential of this technology in enabling and facilitating researchers and practitioners in identifying new areas of inquiry and application.  相似文献   

12.
Abstract

Resource scheduling for emergency relief operations is complex as it has many constraints. However, an effective allocation and sequencing of resources are crucial for the minimization of the completion times in emergency relief operations. Despite the importance of such decisions, only a few mathematical models of emergency relief operations have been studied. This article presents a bi-objective mixed integer programming (MIP) that helps to minimize both the total weighted time of completion of the demand points and the makespan of the total emergency relief operation. A two-phase method is developed to solve the bi-objective MIP problem. Additionally, a case study of hospital network in the Melbourne metropolitan area is used to evaluate the model. The results indicate that the model can successfully support the decisions required in the optimal resource scheduling of emergency relief operations.  相似文献   

13.
This paper presents a scheduling algorithm to solve flowshop problems with a common job sequence on all machines. This algorithm uses makespan as its criterion. Initially, it chooses a preferred sequence by scanning the processing times matrix and making a few calculations. The makespan time of the preferred job-sequence is further reduced by using an improvement routine that allows interchanges between adjacent jobs. Solutions of 1200 problems are compared with the best solutions previously reported for corresponding size problems in the Campbell-Dudek-Smith (C-D-S) paper [1]. This algorithm offers up to 1% average improvement in reducing the makespan of nearly 50% of the problem sets over the results of the existing algorithms, and its computational time requirements are about one-fifth of that of the C-D-S algorithm.  相似文献   

14.
This paper proposes an iterated greedy algorithm for solving the blocking flowshop scheduling problem for makespan minimization. Moreover, it presents an improved NEH-based heuristic, which is used as the initial solution procedure for the iterated greedy algorithm. The effectiveness of both procedures was tested on some of Taillard’s benchmark instances that are considered to be blocking flowshop instances. The experimental evaluation showed the efficiency of the proposed algorithm, in spite of its simple structure, in comparison with a state-of-the-art algorithm. In addition, new best solutions for Taillard’s instances are reported for this problem, which can be used as a basis of comparison in future studies.  相似文献   

15.

This paper describes the classical problem of scheduling n jobs on m machines in a flow shop. A schedule evaluation algorithm is presented, which for job-pairs, generates a schedule evaluation matrix. The matrix is the input data to a transportation problem, the solution of which gives near-optimal jobsequence and makespan. The performance of the algorithm is discussed.  相似文献   

16.
Single machine scheduling problems have been extensively studied in the literature under the assumption that all jobs have to be processed. However, in many practical cases, one may wish to reject the processing of some jobs in the shop, which results in a rejection cost. A solution for a scheduling problem with rejection is given by partitioning the jobs into a set of accepted and a set of rejected jobs, and by scheduling the set of accepted jobs among the machines. The quality of a solution is measured by two criteria: a scheduling criterion, F1, which is dependent on the completion times of the accepted jobs, and the total rejection cost, F2. Problems of scheduling with rejection have been previously studied, but usually within a narrow framework—focusing on one scheduling criterion at a time. This paper provides a robust unified bicriteria analysis of a large set of single machine problems sharing a common property, namely, all problems can be represented by or reduced to a scheduling problem with a scheduling criterion which includes positional penalties. Among these problems are the minimization of the makespan, the sum of completion times, the sum and variation of completion times, and the total earliness plus tardiness costs where the due dates are assignable. Four different problem variations for dealing with the two criteria are studied. The variation of minimizing F1+F2 is shown to be solvable in polynomial time, while all other three variations are shown to be $\mathcal{NP}$ -hard. For those hard problems we provide a pseudo polynomial time algorithm. An FPTAS for obtaining an approximate efficient schedule is provided as well. In addition, we present some interesting special cases which are solvable in polynomial time.  相似文献   

17.
The physical distribution management process involves dual, but conflicting objectives: (1) the minimization of system costs and (2) the maximization of service levels. Most physical distribution research focuses on cost minimization and treats service levels as constraints. This paper, however, highlights the service aspect of distribution. It reports an experiment with purchasing agents designed to test three alternative approaches for evaluating customers' (dollar) trade-offs between service levels received and cost. Two of the approaches indirectly derive trade-off values; the other approach relies on directly reported trade-off information. In this experiment all three of the approaches were quite accurate in modeling customers' preferences for different physical distribution mixes, but the indirect procedures were more accurate than the direct approach.  相似文献   

18.
We study scheduling problems with controllable processing times on parallel machines. Our objectives are to maximize the weighted number of jobs that are completed exactly at their due date and to minimize the total resource allocation cost. We consider four different models for treating the two criteria. We prove that three of these problems are NP\mathcal{NP} -hard even on a single machine, but somewhat surprisingly, the problem of maximizing an integrated objective function can be solved in polynomial time even for the general case of a fixed number of unrelated parallel machines. For the three NP\mathcal{NP} -hard versions of the problem, with a fixed number of machines and a discrete resource type, we provide a pseudo-polynomial time optimization algorithm, which is converted to a fully polynomial time approximation scheme.  相似文献   

19.
对同时优化电力成本和制造跨度的多目标批处理机调度问题进行了研究,设计了两种多目标蚁群算法,基于工件序的多目标蚁群算法(J-PACO,Job-based Pareto Ant Colony Optimization)和基于成批的多目标蚁群算法(B-PACO,Batch-based Pareto Ant Colony Optimization)对问题进行求解分析。由于分时电价中电价是时间的函数,因而在传统批调度进行批排序的基础上,需要进一步确定批加工时间点以测定电力成本。提出的两种蚁群算法分别将工件和批与时间线相结合进行调度对此类问题进行求解。通过仿真实验将两种算法对问题的求解进行了比较,仿真实验表明B-PACO算法通过结合FFLPT(First Fit Longest Processing Time)启发式算法先将工件成批再生成最终方案,提高了算法搜索效率,并且在衡量算法搜索非支配解数量的Q指标和衡量非支配集与Pareto边界接近程度的HV指标上,均优于J-PACO算法。  相似文献   

20.

Multiprocessor scheduling, also called scheduling on parallel identical machines to minimize the makespan, is a classic optimization problem which has been extensively studied. Scheduling with testing is an online variant, where the processing time of a job is revealed by an extra test operation, otherwise the job has to be executed for a given upper bound on the processing time. Albers and Eckl recently studied the multiprocessor scheduling with testing; among others, for the non-preemptive setting they presented an approximation algorithm with competitive ratio approaching 3.1016 when the number of machines tends to infinity and an improved approximation algorithm with competitive ratio approaching 3 when all test operations take one unit of time each. We propose to first sort the jobs into non-increasing order of the minimum value between the upper bound and the testing time, then partition the jobs into three groups and process them group by group according to the sorted job order. We show that our algorithm achieves better competitive ratios, which approach 2.9513 when the number of machines tends to infinity in the general case; when all test operations each takes one time unit, our algorithm achieves even better competitive ratios approaching 2.8081.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号