首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we consider the scheduling problem with machine cost and rejection penalties. For this problem, we are given a sequence of independent jobs, each being characterized by its processing time (size) and its penalty. No machine is initially provided, and when a job is revealed the algorithm has the option to purchase new machines. Right when a new job arrives, we have the following choices: (i) reject it, in which case we pay its penalty; (ii) non-preemptively process it on an existing machine, which contributes to the machine load; (iii) purchase a new machine, and assign it to this machine. The objective is to minimize the sum of the makespan, the cost for purchasing machines, and the total penalty of all rejected jobs. For the small job case, (where all jobs have sizes no greater than the cost for purchasing one machine, and which is the generalization of the Ski-Rental Problem) we present an optimal online algorithm with a competitive ratio of 2.  相似文献   

2.
In this paper we consider three semi-online scheduling problems for jobs with release times on m identical parallel machines. The worst case performance ratios of the LS algorithm are analyzed. The objective function is to minimize the maximum completion time of all machines, i.e. the makespan. If the job list has a non-decreasing release times, then $2-\frac{1}{m}$ is the tight bound of the worst case performance ratio of the LS algorithm. If the job list has non-increasing processing times, we show that $2-\frac{1}{2m}$ is an upper bound of the worst case performance ratio of the LS algorithm. Furthermore if the job list has non-decreasing release times and the job list has non-increasing processing times we prove that the LS algorithm has worst case performance ratio not greater than $\frac{3}{2} -\frac{1}{2m}$ .  相似文献   

3.
We study an integrated production–distribution scheduling problem where jobs are released by customers to a manufacturer over time. The jobs are released online, that is, at any time the information of the number, release and processing times of future jobs is unknown, and the processing time of a job becomes known when the job is released. The manufacturer processes the jobs on a single machine. During the processing of jobs preemption is not allowed. Completed jobs are delivered in batches to customers via sufficient capacitated vehicles. For the objective of minimizing the sum of the total delivery time and the total distribution cost, we present a 3-competitive algorithm for the single-customer case and then extend the result to the multi-customer case. A lower bound of two on the competitive ratio of the problem is also given.  相似文献   

4.
This paper investigates an online hierarchical scheduling problem on m parallel identical machines. Our goal is to minimize the total completion time of all jobs. Each job has a unit processing time and a hierarchy. The job with a lower hierarchy can only be processed on the first machine and the job with a higher hierarchy can be processed on any one of m machines. We first show that the lower bound of this problem is at least \(1+\min \{\frac{1}{m}, \max \{\frac{2}{\lceil x\rceil +\frac{x}{\lceil x\rceil }+3}, \frac{2}{\lfloor x\rfloor +\frac{x}{\lfloor x\rfloor }+3}\}\), where \(x=\sqrt{2m+4}\). We then present a greedy algorithm with tight competitive ratio of \(1+\frac{2(m-1)}{m(\sqrt{4m-3}+1)}\). The competitive ratio is obtained in a way of analyzing the structure of the instance in the worst case, which is different from the most common method of competitive analysis. In particular, when \(m=2\), we propose an optimal online algorithm with competitive ratio of \(16\) \(/\) \(13\), which complements the previous result which provided an asymptotically optimal algorithm with competitive ratio of 1.1573 for the case where the number of jobs n is infinite, i.e., \(n\rightarrow \infty \).  相似文献   

5.
In this paper we consider a semi-online scheduling problem with rejection on two uniform machines with speed 1 and s≥1, respectively. A sequence of independent jobs are given and each job is characterized by its size (processing time) and its penalty, in the sense that, jobs arrive one by one and can be either rejected by paying a certain penalty or assigned to some machine. No preemption is allowed. The objective is to minimize the sum of the makespan of schedule, which is yielded by all accepted jobs and the total penalties of all rejected ones. Further, two rejection strategies are permitted thus an algorithm can propose two different schemes, from which the better solution is chosen. For the above version, we present an optimal semi-online algorithm H that achieves a competitive ratio ρ H (s) as a piecewise function in terms of the speed ratio s.  相似文献   

6.
In this paper, we consider an interesting generalization of the classic job scheduling problem in which each job needs to compete not only for machines but also for other types of resources. The contentions among jobs for machines and for resources could interfere with each other, which complicates the problem dramatically. We present a family of approximation algorithms for solving several variants of the problem by using a generic algorithmic framework. Our algorithms achieve a constant approximation ratio (i.e., 3) when there is only one type of resources or certain dependency relation exists among multiple types of resources. When the r resources are unrelated, the approximation ratio of our algorithm becomes k+2, where kr is a constant depending on the problem instance. As an application, we also show that our techniques can be easily applied to optical burst switching (OBS) networks to design more efficient wavelength scheduling algorithms.This research was supported in part by an IBM faculty partnership award, and an IRCAF award from SUNY Buffalo.  相似文献   

7.
This paper addresses the performance of scheduling algorithms for a two-stage no-wait hybrid flowshop environment with inter-stage flexibility, where there exist several parallel machines at each stage. Each job, composed of two operations, must be processed from start to completion without any interruption either on or between the two stages. For each job, the total processing time of its two operations is fixed, and the stage-1 operation is divided into two sub-parts: an obligatory part and an optional part (which is to be determined by a solution), with a constraint that no optional part of a job can be processed in parallel with an idleness of any stage-2 machine. The objective is to minimize the makespan. We prove that even for the special case with only one machine at each stage, this problem is strongly NP-hard. For the case with one machine at stage 1 and m machines at stage 2, we propose two polynomial time approximation algorithms with worst case ratio of \(3-\frac{2}{m+1}\) and \(2-\frac{1}{m+1}\), respectively. For the case with m machines at stage 1 and one machine at stage 2, we propose a polynomial time approximation algorithm with worst case ratio of 2. We also prove that all the worst case ratios are tight.  相似文献   

8.
In this paper, we consider the off-line and on-line two-machine flow-shop scheduling problems with rejection. The objective is to minimize the sum of the makespan of accepted jobs and the total rejection penalty of rejected jobs. For the off-line version, Shabtay and Gasper (Comput Oper Res 39:1087–1096, 2012) showed that this problem is NP-hard and then provided a pseudo-polynomial-time algorithm, two 2-approximation algorithms and a fully polynomial-time approximation scheme. We further study some special cases in this paper. We show that this problem is still NP-hard even when all jobs have the same processing time on one of the machines or all jobs have the same rejection penalty. Furthermore, we also showed that this problem can be solved in polynomialtime algorithm when all jobs satisfy the agreeable condition on their processing times and rejection penalties. For the on-line version without rejection, Chen and Woeginger [in: Du DZ, Pardalos PM (eds.) Minimax and Applications, 1995] showed that the competitive ratio of any determined on-line algorithm is at least 2. We further show that the competitive ratio of any determined on-line algorithm is at least 2 even when all jobs have the same processing time on the first machine. Finally, for the on-line version with rejection, we present a class of on-line algorithms with the best-possible competitive ratio 2.  相似文献   

9.
Luo  Wenchang  Chin  Rylan  Cai  Alexander  Lin  Guohui  Su  Bing  Zhang  An 《Journal of Combinatorial Optimization》2022,44(1):690-722

In the multiprocessor scheduling problem to minimize the total job completion time, an optimal schedule can be obtained by the shortest processing time rule and the completion time of each job in the schedule can be used as a guarantee for scheduling revenue. However, in practice, some jobs will not arrive at the beginning of the schedule but are delayed and their delayed arrival times are given to the decision-maker for possible rescheduling. The decision-maker can choose to reject some jobs in order to minimize the total operational cost that includes three cost components: the total rejection cost of the rejected jobs, the total completion time of the accepted jobs, and the penalty on the maximum tardiness for the accepted jobs, for which their completion times in the planned schedule are their virtual due dates. This novel rescheduling problem generalizes several classic NP-hard scheduling problems. We first design a pseudo-polynomial time dynamic programming exact algorithm and then, when the tardiness can be unbounded, we develop it into a fully polynomial time approximation scheme. The dynamic programming exact algorithm has a space complexity too high for truthful implementation; we propose an alternative to integrate the enumeration and the dynamic programming recurrences, followed by a depth-first-search walk in the reschedule space. We implemented the alternative exact algorithm in C and conducted numerical experiments to demonstrate its promising performance.

  相似文献   

10.
对同时优化电力成本和制造跨度的多目标批处理机调度问题进行了研究,设计了两种多目标蚁群算法,基于工件序的多目标蚁群算法(J-PACO,Job-based Pareto Ant Colony Optimization)和基于成批的多目标蚁群算法(B-PACO,Batch-based Pareto Ant Colony Optimization)对问题进行求解分析。由于分时电价中电价是时间的函数,因而在传统批调度进行批排序的基础上,需要进一步确定批加工时间点以测定电力成本。提出的两种蚁群算法分别将工件和批与时间线相结合进行调度对此类问题进行求解。通过仿真实验将两种算法对问题的求解进行了比较,仿真实验表明B-PACO算法通过结合FFLPT(First Fit Longest Processing Time)启发式算法先将工件成批再生成最终方案,提高了算法搜索效率,并且在衡量算法搜索非支配解数量的Q指标和衡量非支配集与Pareto边界接近程度的HV指标上,均优于J-PACO算法。  相似文献   

11.
The paper investigates a new three-machine shop scheduling problem that arises from many production systems, such as the garment assembly line, etc. In such scenarios, each job consists of three operations, each of which has to be non-preemptively processed by one specific machine. In contrast with the classical three-machine shop scheduling, the processing order of the operations of each job is partially restricted. In particular, the first two operations are ordered and all the same for all jobs, while the third operation is not restricted. The objective is to minimize the makespan. We show the problem is NP-hard in the ordinary sense and present a polynomial time approximation algorithm with a worst case performance ratio of $\frac{3}{2}$ .  相似文献   

12.
We consider a scheduling problem on two identical parallel machines, in which the jobs are moved between the machines by an uncapacitated transporter. In the processing preemption is allowed. The objective is to minimize the time by which all completed jobs are collected together on board the transporter. We identify the structural patterns of an optimal schedule and design an algorithm that either solves the problem to optimality or in the worst case behaves as a fully polynomial-time approximation scheme.  相似文献   

13.
In this paper we consider the scheduling problem with parallel-batching machines from a game theoretic perspective. There are m parallel-batching machines each of which can handle up to b jobs simultaneously as a batch. The processing time of a batch is the time required for processing the longest job in the batch, and all the jobs in a batch start and complete at the same time. There are n jobs. Each job is owned by a rational and selfish agent and its individual cost is the completion time of its job. The social cost is the largest completion time over all jobs, the makespan. We design a coordination mechanism for the scheduling game problem. We discuss the existence of pure Nash Equilibria and offer upper and lower bounds on the price of anarchy of the coordination mechanism. We show that the mechanism has a price of anarchy no more than \(2-\frac{2}{3b}-\frac{1}{3\max \{m,b\}}\).  相似文献   

14.
This paper considers a problem of semi-online scheduling jobs on two identical parallel machines with objective to minimize the makespan. We assume there is an unavailable period [B,F] on one machine and the largest job processing time P max? is known in advance. After comparing B with P max? we consider three cases, and we show a lower bound of the problem are 3/2, 4/3 and \((\sqrt{5}+1)/2\), respectively. We further present an optimal algorithm and prove its competitive ratio reaches the lower bound.  相似文献   

15.
We consider a temperature-aware online deadline scheduling model. The objective is to schedule a number of unit jobs, with release dates, deadlines, weights and heat contributions, to maximize the weighted throughput subject to a temperature threshold. We first give an optimally competitive randomized algorithm. Then we give a constant competitive randomized algorithm that allows a tradeoff between the maximum heat contribution of jobs and the competitiveness. Finally we consider the multiple processor case and give several tight upper and lower bounds.  相似文献   

16.
We study a variant of classical scheduling, which is called scheduling with “end of sequence” information. It is known in advance that the last job has the longest processing time. Moreover, the last job is marked, and thus it is known for every new job whether it is the final job of the sequence. We explore this model on two uniformly related machines, that is, two machines with possibly different speeds. Two objectives are considered, maximizing the minimum completion time and minimizing the maximum completion time (makespan). Let s be the speed ratio between the two machines, we consider the competitive ratios which are possible to achieve for the two problems as functions of s. We present algorithms for different values of s and lower bounds on the competitive ratio. The proposed algorithms are best possible for a wide range of values of s. For the overall competitive ratio, we show tight bounds of ϕ + 1 ≈ 2.618 for the first problem, and upper and lower bounds of 1.5 and 1.46557 for the second problem. The authors would like to dedicate this paper to the memory of our colleague and friend Yong He who passed away in August 2005 after struggling with illness. D. Ye: Research was supported in part by NSFC (10601048).  相似文献   

17.
In this paper we study the optimality of the TLS algorithm for solving the online scheduling problem of minimizing the makespan on a set of m multipurpose machines, where there are two different job types and each job type can only be processed on a unique subset of machines. The literature shows that the TLS algorithm is optimal for the special cases where either m=2 or where all processing times are restricted to unity. We show that the TLS algorithm is optimal also for the special cases where the job processing times are either job type or machine set dependent. For both cases, the optimality of the TLS algorithm is proven by showing that its competitive ratio matches the lower bound for any processing set and processing time parameters.  相似文献   

18.
In this paper we study scheduling with release times and job rejection on two parallel machines. In our scheduling model each job is either accepted and then processed by one of the two machines at or after its release time, or it is rejected and then a rejection penalty is paid. The objective is to minimize the makespan of the accepted job plus the total penalty of all rejected jobs. The scheduling problem is NP-hard in the ordinary sense. In this paper, we develop a \(1.5+\epsilon \)-approximation algorithm for the problem, where \(\epsilon \) is any given small positive constant.  相似文献   

19.
We consider parallel-machine scheduling of deteriorating jobs in a disruptive environment in which some of the machines will become unavailable due to potential disruptions. This means that a disruption to some of the machines may occur at a particular time, which will last for a period of time with a certain probability. If a job is disrupted during processing by a disrupted machine and it does not need (needs) to re-start after the machine becomes available again, it is called the resumable (non-resumable) case. By deteriorating jobs, we mean that the actual processing time of a job grows when it is scheduled for processing later because the machine efficiency deteriorates over time due to machine usage and aging. However, a repaired machine will return to its original state of efficiency. We consider two cases, namely performing maintenance immediately on the disrupted machine when a disruption occurs and not performing machine maintenance. In each case, the objective is to determine the optimal schedule to minimize the expected total completion time of the jobs in both non-resumable and resumable cases. We determine the computational complexity status of various cases of the problem, and provide pseudo-polynomial-time solution algorithms and fully polynomial-time approximation schemes for them, if viable.  相似文献   

20.
We consider the online scheduling on a single machine, in which jobs are released over time and each job can be either accepted and scheduled on the machine or rejected under a certain rejection cost. The goal is to minimize the total weighted completion time of the accepted jobs plus the total rejection cost of the rejected jobs. For this problem, we provide an online algorithm with a best possible competitive ratio of 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号