首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Let F be an edge subset and \(F^{\prime }\) a subset of edges and vertices of a graph G. If \(G-F\) and \(G-F^{\prime }\) have no fractional perfect matchings, then F is a fractional matching preclusion (FMP) set and \(F^{\prime }\) is a fractional strong MP (FSMP) set of G. The FMP (FSMP) number of G is the minimum size of FMP (FSMP) sets of G. In this paper, the FMP number and the FSMP number of Petersen graph, complete graphs and twisted cubes are obtained, respectively.  相似文献   

2.
The heterochromatic tree partition number of an \(r\) -edge-colored graph \(G,\) denoted by \(t_r(G),\) is the minimum positive integer \(p\) such that whenever the edges of the graph \(G\) are colored with \(r\) colors, the vertices of \(G\) can be covered by at most \(p\) vertex disjoint heterochromatic trees. In this article we determine the upper and lower bounds for the heterochromatic tree partition number \(t_r(K_{n_1,n_2,\ldots ,n_k})\) of an \(r\) -edge-colored complete \(k\) -partite graph \(K_{n_1,n_2,\ldots ,n_k}\) , and the gap between upper and lower bounds is at most one.  相似文献   

3.
Let k be a positive integer and let G be a graph with vertex set V(G). The total {k}-dominating function (T{k}DF) of a graph G is a function f from V(G) to the set {0,1,2,??,k}, such that for each vertex v??V(G), the sum of the values of all its neighbors assigned by f is at least k. A set {f 1,f 2,??,f d } of pairwise different T{k}DFs of G with the property that $\sum_{i=1}^{d}f_{i}(v)\leq k$ for each v??V(G), is called a total {k}-dominating family (T{k}D family) of G. The total {k}-domatic number of a graph G, denoted by $d_{t}^{\{k\}}(G)$ , is the maximum number of functions in a T{k}D family. In this paper, we determine the exact values of the total {k}-domatic numbers of wheels and complete graphs, which answers an open problem of Sheikholeslami and Volkmann (J. Comb. Optim., 2010) and completes a result in the same paper.  相似文献   

4.
For a graph G, let τ(G) be the decycling number of G and c(G) be the number of vertex-disjoint cycles of G. It has been proved that c(G)≤τ(G)≤2c(G) for an outerplanar graph G. An outerplanar graph G is called lower-extremal if τ(G)=c(G) and upper-extremal if τ(G)=2c(G). In this paper, we provide a necessary and sufficient condition for an outerplanar graph being upper-extremal. On the other hand, we find a class $\mathcal{S}$ of outerplanar graphs none of which is lower-extremal and show that if G has no subdivision of S for all $S\in \mathcal{S}$ , then G is lower-extremal.  相似文献   

5.
Given a graph G=(V,E), two players, Alice and Bob, alternate their turns in choosing uncoloured vertices to be coloured. Whenever an uncoloured vertex is chosen, it is coloured by the least positive integer not used by any of its coloured neighbours. Alice’s goal is to minimise the total number of colours used in the game, and Bob’s goal is to maximise it. The game Grundy number of G is the number of colours used in the game when both players use optimal strategies. It is proved in this paper that the maximum game Grundy number of forests is 3, and the game Grundy number of any partial 2-tree is at most 7.  相似文献   

6.
The thickness of a graph is the minimum number of planar spanning subgraphs into which the graph can be decomposed. It is known for relatively few classes of graphs, compared to other topological invariants, e.g., genus and crossing number. For the complete bipartite graphs, Beineke et al. (Proc Camb Philos Soc 60:1–5, 1964) gave the answer for most graphs in this family in 1964. In this paper, we derive formulas and bounds for the thickness of some complete k-partite graphs. And some properties for the thickness for the join of two graphs are also obtained.  相似文献   

7.
8.
Journal of Combinatorial Optimization - A signed edge-domination of graph G is a function $$f: E(G)rightarrow {+1,-1}$$ such that $$sum _{e'in N_{G}[e]}{f(e')}ge 1$$ for each $$ein...  相似文献   

9.
A simple connected graph G with 2n vertices is said to be k-extendable for an integer k with \(0<k<n\) if G contains a perfect matching and every matching of cardinality k in G is a subset of some perfect matching. Lakhal and Litzler (Inf Process Lett 65(1):11–16, 1998) discovered a polynomial algorithm that decides whether a bipartite graph is k-extendable. For general graphs, however, it has been an open problem whether there exists a polynomial algorithm. The new result presented in this paper is that the extendability problem is co-NP-complete.  相似文献   

10.
A paired-dominating set of a graph G is a dominating set of vertices whose induced subgraph has a perfect matching, while the paired-domination number is the minimum cardinality of a paired-dominating set in the graph, denoted by \(\gamma _{pr}(G)\). Let G be a connected \(\{K_{1,3}, K_{4}-e\}\)-free cubic graph of order n. We show that \(\gamma _{pr}(G)\le \frac{10n+6}{27}\) if G is \(C_{4}\)-free and that \(\gamma _{pr}(G)\le \frac{n}{3}+\frac{n+6}{9(\lceil \frac{3}{4}(g_o+1)\rceil +1)}\) if G is \(\{C_{4}, C_{6}, C_{10}, \ldots , C_{2g_o}\}\)-free for an odd integer \(g_o\ge 3\); the extremal graphs are characterized; we also show that if G is a 2 -connected, \(\gamma _{pr}(G) = \frac{n}{3} \). Furthermore, if G is a connected \((2k+1)\)-regular \(\{K_{1,3}, K_4-e\}\)-free graph of order n, then \(\gamma _{pr}(G)\le \frac{n}{k+1} \), with equality if and only if \(G=L(F)\), where \(F\cong K_{1, 2k+2}\), or k is even and \(F\cong K_{k+1,k+2}\).  相似文献   

11.
Let \(G=(V,E)\) be a simple graph without isolated vertices. For a positive integer \(k\) , a subset \(D\) of \(V(G)\) is a \(k\) -distance paired-dominating set if each vertex in \(V\setminus {D}\) is within distance \(k\) of a vertex in \(D\) and the subgraph induced by \(D\) contains a perfect matching. In this paper, we give some upper bounds on the 2-distance paired-dominating number in terms of the minimum and maximum degree, girth, and order.  相似文献   

12.
13.
This paper deals with the subject of minimal path decomposition of complete bipartite graphs. A path decomposition of a graph is a decomposition of it into simple paths such that every edge appears in exactly one path. If the number of paths is the minimum possible, the path decomposition is called minimal. Algorithms that derive such decompositions are presented, along with their proof of correctness, for the three out of the four possible cases of a complete bipartite graph.  相似文献   

14.
In this paper, we prove that a simple graph G of order sufficiently large n with the minimal degree \(\delta (G)\ge k\ge 2\) is Hamilton-connected except for two classes of graphs if the number of edges in G is at least \(\frac{1}{2}(n^2-(2k-1)n + 2k-2)\). In addition, this result is used to present sufficient spectral conditions for a graph with large minimum degree to be Hamilton-connected in terms of spectral radius or signless Laplacian spectral radius, which extends the results of (Zhou and Wang in Linear Multilinear Algebra 65(2):224–234, 2017) for sufficiently large n. Moreover, we also give a sufficient spectral condition for a graph with large minimum degree to be Hamilton-connected in terms of spectral radius of its complement graph.  相似文献   

15.
A total weighting of a graph G is a mapping \(\phi \) that assigns a weight to each vertex and each edge of G. The vertex-sum of \(v \in V(G)\) with respect to \(\phi \) is \(S_{\phi }(v)=\sum _{e\in E(v)}\phi (e)+\phi (v)\). A total weighting is proper if adjacent vertices have distinct vertex-sums. A graph \(G=(V,E)\) is called \((k,k')\)-choosable if the following is true: If each vertex x is assigned a set L(x) of k real numbers, and each edge e is assigned a set L(e) of \(k'\) real numbers, then there is a proper total weighting \(\phi \) with \(\phi (y)\in L(y)\) for any \(y \in V \cup E\). In this paper, we prove that for any graph \(G\ne K_1\), the Mycielski graph of G is (1,4)-choosable. Moreover, we give some sufficient conditions for the Mycielski graph of G to be (1,3)-choosable. In particular, our result implies that if G is a complete bipartite graph, a complete graph, a tree, a subcubic graph, a fan, a wheel, a Halin graph, or a grid, then the Mycielski graph of G is (1,3)-choosable.  相似文献   

16.
A proper coloring of the vertices of a graph G is called a star-coloring if the union of every two color classes induces a star forest. The graph G is L-star-colorable if for a given list assignment L there is a star-coloring π such that π(v)∈L(v). If G is L-star-colorable for any list assignment L with |L(v)|≥k for all vV(G), then G is called k-star-choosable. The star list chromatic number of G, denoted by $\chi_{s}^{l}(G)$ , is the smallest integer k such that G is k-star-choosable. In this paper, we prove that every planar subcubic graph is 6-star-choosable.  相似文献   

17.
An incidence in a graph G is a pair (ve) where v is a vertex of G and e is an edge of G incident to v. Two incidences (ve) and (uf) are adjacent if at least one of the following holds: \((a) v = u, (b) e = f\), or \((c) vu \in \{e,f\}\). An incidence coloring of G is a coloring of its incidences assigning distinct colors to adjacent incidences. In this note we prove that every subquartic graph admits an incidence coloring with at most seven colors.  相似文献   

18.
A coloring of a graph \(G=(V,E)\) is a partition \(\{V_1, V_2, \ldots , V_k\}\) of V into independent sets or color classes. A vertex \(v\in V_i\) is a Grundy vertex if it is adjacent to at least one vertex in each color class \(V_j\) for every \(j<i\). A coloring is a Grundy coloring if every vertex is a Grundy vertex, and the Grundy number \(\Gamma (G)\) of a graph G is the maximum number of colors in a Grundy coloring. We provide two new upper bounds on Grundy number of a graph and a stronger version of the well-known Nordhaus-Gaddum theorem. In addition, we give a new characterization for a \(\{P_{4}, C_4\}\)-free graph by supporting a conjecture of Zaker, which says that \(\Gamma (G)\ge \delta (G)+1\) for any \(C_4\)-free graph G.  相似文献   

19.
Given a graph G and positive integers p,q with pq, the (p,q)-total number $\lambda_{p,q}^{T}(G)$ of G is the width of the smallest range of integers that suffices to label the vertices and the edges of G such that the labels of any two adjacent vertices are at least q apart, the labels of any two adjacent edges are at least q apart, and the difference between the labels of a vertex and its incident edges is at least p. Havet and Yu (Discrete Math 308:496–513, 2008) first introduced this problem and determined the exact value of $\lambda_{p,1}^{T}(K_{n})$ except for even n with p+5≤n≤6p 2?10p+4. Their proof for showing that $\lambda _{p,1}^{T}(K_{n})\leq n+2p-3$ for odd n has some mistakes. In this paper, we prove that if n is odd, then $\lambda_{p}^{T}(K_{n})\leq n+2p-3$ if p=2, p=3, or $4\lfloor\frac{p}{2}\rfloor+3\leq n\leq4p-1$ . And we extend some results that were given in Havet and Yu (Discrete Math 308:496–513, 2008). Beside these, we give a lower bound for $\lambda_{p,q}^{T}(K_{n})$ under the condition that q<p<2q.  相似文献   

20.
The problem of monitoring an electric power system by placing as few measurement devices in the system as possible is closely related to the well-known domination problem in graphs. Following a set of rules for power system monitoring, a set S of vertices is defined to be a power dominating set of a graph if every vertex and every edge in the system is monitored by the set S. The minimum cardinality of a power dominating set of G is the power domination number γ p (G). In this paper, we investigate the power domination number for the generalized Petersen graphs, presenting both upper bounds for such graphs and exact results for a subfamily of generalized Petersen graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号