首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We model a supply chain consisting of a supplier and multiple retailers facing deterministic demand. We denote some retailers as strategic in the sense that given the supplier inventory information, they will implement the optimal stocking policy by incorporating such information. On the other hand, some retailers are denoted as naïve in the sense that they ignore supply information and resort to a simplistic ordering policy. Naïve retailers learn the optimal policy over time and adjust their orders accordingly. We study the dynamics of this game and investigate the impact of such strategic and naïve retailers on the cost, ordering pattern and stocking policies of all parties. We analyze the supply chain under two scenarios: the centralized supply chain where the objective is to minimize the total supply chain cost, and the decentralized supply chain where each self‐interested player minimizes its own cost in a Stackelberg game setting. We fully characterize the optimal policies under both centralized and decentralized scenarios and show that, surprisingly, the supply chain might be better off by virtue of naïve retailers. The result is driven by the fact that strategic and naïve players’ decisions shift the positioning of inventory in the supply chain with its final impact being determined by the relative costs of different retailer‐types. Our results also offer managerial insights into how access to supply information can improve supply chain performance.  相似文献   

2.
It is understood that quantity discounts provide a practical foundation for coordinating inventory decisions in supply chains. The primary objective of this research is to test, under a variety of environmental conditions, the effectiveness of quantity discounts as an inventory coordination mechanism between a buyer and a supplier. A comprehensive simulation experiment with anova has been designed to investigate the impacts of (1) choice of quantity discount‐based inventory coordination policies, (2) magnitude of demand variation, (3) buyer's and supplier's relative inventory cost structure, and (4) buyer's economic time‐between‐orders on the effectiveness of supply chain inventory coordination. The analytical results confirm that the quantity discount policies have managerial properties as a mediator for inventory coordination. The results also show that the performance of quantity discount‐based inventory coordination policies is influenced significantly by environmental factors, such as the magnitude of demand variation, the buyer's and the supplier's inventory cost structure, and the buyer's economic time‐between‐orders.  相似文献   

3.
We address the value of information and value of centralized control in the context of a two‐echelon, serial supply chain with one retailer and one supplier that provide a single perishable product to consumers. Our analysis is relevant for managing slow‐moving perishable products with fixed lot sizes and expiration dates of a week or less. We evaluate two supply chain structures. In the first structure, referred to as decentralized information sharing, the retailer shares its demand, inventory, and ordering policy with the supplier, yet both facilities make their own profit‐maximizing replenishment decisions. In the second structure, centralized control, incentives are aligned and the replenishment decisions are coordinated. The latter supply chain structure corresponds to the industry practices of company‐owned stores or vendor‐managed inventory. We measure the value of information and value of centralized control as the marginal improvement in expected profits that a supply chain achieves relative to the case when no information is shared and decision making is decentralized. Key assumptions of our model include stochastic demand, lost sales, and fixed order quantities. We establish the importance of information sharing and centralized control in the supply chain and identify conditions under which benefits are realized. As opposed to previous work on the value of information, the major benefit in our setting is driven by the supplier's ability to provide the retailer with fresher product. By isolating the benefit by firm, we show that sharing information is not always Pareto‐improving for both supply chain partners in the decentralized setting.  相似文献   

4.
Firms mitigate uncertainty in demand and supply by carrying safety stock, planning for excess capacity and diversifying supply sources. In this study, we provide a framework to jointly optimize these three levers in a periodic review infinite horizon setting, and in particular we examine how one can reduce inventory and capacity investments through proper diversification strategies. Observing that a modified base‐stock inventory policy is optimal, we find that the capacity‐diversification problem is well behaved and characterize the optimal mix of safety stock, excess capacity and extra number of supply sources. We find that higher supply uncertainty results in higher safety stock, more excess capacity, and higher diversification. But safety stock and diversification are non‐monotonic in demand uncertainty. Our results can be extended to situations in which suppliers are heterogeneous, and can be used to develop effective heuristics.  相似文献   

5.
This paper proposes a hybrid policy for a stochastic inventory system facing regular demand and surge demand. The combination of two different demand patterns can be observed in many areas, such as healthcare inventory and humanitarian supply chain management. The surge demand has a lower arrival rate but higher demand volume per arrival. The solution approach proposed in this paper incorporates the level crossing method and mixed integer programming technique to optimize the hybrid inventory policy with both regular orders and emergency orders. The level crossing method is applied to obtain the equilibrium distributions of inventory levels under a given policy. The model is further transformed into a mixed integer program to identify an optimal hybrid policy. A sensitivity analysis is conducted to investigate the impact of parameters on the optimal inventory policy and minimum cost. Numerical results clearly show the benefit of using the proposed hybrid inventory model. The model and solution approach could help healthcare providers or humanitarian logistics providers in managing their emergency supplies in responding to surge demands.  相似文献   

6.
We provide empirical evidence that the volatility of inventory productivity relative to the volatility of demand is a predictor of future stock returns in a sample of publicly listed U.S. retailers over the period 1985–2013. This key performance indicator, entitled demand–supply mismatch (DSM), captures the fact that low variation in inventory productivity relative to variation in demand is indicative of the superior synchronization of demand‐ and supply‐side operations. Applying the Fama and French (1993) three‐factor model augmented with a momentum factor (Carhart 1997), we find that zero‐cost portfolios formed by buying the two lowest and selling the two highest quintiles of DSM stocks yield abnormal stock returns of up to 1.13%. These strong market anomalies related to DSM are observed over the entire sample period and persist after controlling for alternative inventory productivity measures and firm characteristics that are known to predict future stock returns. Further, we reveal that DSM is indicative of lower future earnings and lower sales growth and provide evidence that the observed market inefficiency results from investors’ failure to incorporate all of the information that inventory contains into the pricing of stocks.  相似文献   

7.
供应链库存合约研究   总被引:2,自引:5,他引:2  
研究了制造商与其供应商的供应链最优库存策略和在非合作情况下的库存策略,比较分析了两种情况下的库存策略,并设计了库存合约;分析表明,制造商通过设计有效的转移支付合约,可以实现供应链库存的最优化。  相似文献   

8.
It is common for suppliers operating in batch‐production mode to deal with patient and impatient customers. This paper considers inventory models in which a supplier provides alternative lead times to its customers: a short or a long lead time. Orders from patient customers can be taken by the supplier and included in the next production cycle, while orders from impatient customers have to be satisfied from the on‐hand inventory. We denote the action to commit one unit of on‐hand inventory to patient or impatient customers as the inventory‐commitment decision, and the initial inventory stocking as the inventory‐replenishment decision. We first characterize the optimal inventory‐commitment policy as a threshold type, and then prove that the optimal inventory‐replenishment policy is a base‐stock type. Then, we extend our analysis to models to consider cases of a multi‐cycle setting, a supply‐capacity constraint, and the on‐line charged inventory‐holding cost. We also evaluate and compare the performances of the optimal inventory‐commitment policy and the inventory‐rationing policy. Finally, to further investigate the benefits and pitfalls of introducing an alternative lead‐time choice, we use the customer‐choice model to study the demand gains and losses, known as demand‐induction and demand‐cannibalization effects, respectively.  相似文献   

9.
We consider supplier‐facilitated transshipments for achieving supply chain coordination in a single supplier, multi‐retailer distribution system with non‐cooperative retailers. The previous transshipment literature has focused on coordination through retailer‐negotiated transshipments and thus does not consider the supplier's decision‐making. In contrast, in this study, we assume the supplier is an active participant in the system and we seek to understand how the supplier can facilitate the implementation of coordinating transshipments. We study a two‐period model with wholesale orders at the start of the first period and preventive transshipments performed at the start of the second period. Inspired by a supplier‐facilitated transshipment scheme observed in practice, we assume the supplier implements transshipments through a bi‐directional adjustment contract. Under this contract, each retailer can either buy additional inventory from, or sell back excess inventory to, the supplier. We show that coordination can be achieved through carefully designed contracts with state‐dependent adjustment prices and a wholesale price menu. We demonstrate that the supplier's role in facilitating coordinating transshipments is critical. In addition, we use our understanding of the coordinating contract form to derive some simpler and easier‐to‐implement heuristic contracts. We use a numerical study to demonstrate the value, to the supplier, of using the coordinating adjustment and wholesale prices, and to evaluate the heuristics’ performance.  相似文献   

10.
随机需求直接发运的运输与库存整合优化研究   总被引:2,自引:0,他引:2  
分销系统的运输与库存整合优化是供应链管理的重要研究课题.本文分析了随机需求两级分销系统的三种配送策略,并具体给出了基于整车直接发运策略的运输决策与库存控制整合优化数学模型,可得到最优的两级最优库存水平和最优的运输频率.最后对给出的算例,利用MATLAB7的规划求解功能容易获得了问题的最优解.  相似文献   

11.
The management of remanufacturing inventory system is often challenged by mismatched supply (i.e., returned units, called cores) and demand. Typically, the demand for remanufactured units is high and exceeds the supply early in a product's lifetime, and drops below the supply late in the lifetime. This supply–demand imbalance motivates us to study a switching strategy to facilitate the decision‐making process. This strategy deploys a push mode at the early stage of a product's lifetime, which remanufactures scarce cores to stock to responsively satisfy the high demand, and switches to a pull mode as the product approaches obsolescence to accurately match the low demand with supply. In addition, the strategy further simplifies the decision‐making process by ignoring the impact of leftover cores at the end of each decision period. We show that the optimal policy of the switching strategy possesses a simple, multi‐dimensional base‐stock structure, which aims to remanufacture units from the i best‐quality categories up to the ith state‐independent base‐stock level. An extensive numerical study shows that the switching strategy delivers close‐to‐optimal and robust performance: the strategy only incurs an average profit loss of 1.21% and a maximum of 2.27%, compared with the optimal one. The numerical study also shows when a pure push or pull strategy, a special case of the switching strategy, delivers good performance. The study offers the managerial insight that firms can use simple, easy‐to‐implement strategies to efficiently manage the remanufacturing inventory system.  相似文献   

12.
Stockpiling inventory is an essential strategy for building supply chain resilience. It enables firms to continue operating while finding a solution to an unexpected event that causes a supply disruption or demand surge. While extremely valuable when actually deployed, stockpiles incur large holding costs and usually provide no benefits until such a time. To help to reduce this cost, this study presents a new approach for managing stockpiles. We show that if leveraged intelligently, stockpiles can also help an organization better meet its own regular demand by enabling a type of virtual pooling we call virtual stockpile pooling (VSP). The idea of VSP is to first integrate the stockpile into several locations’ regular inventory buffers and then dynamically reallocate the stockpile among these locations in reaction to the demand realizations to achieve a kind of virtual transshipment. To study how to execute VSP and determine when it can provide the most value, we formulate a stylized multi‐location stochastic inventory model and solve for the optimal stockpile allocation and inventory order policies. We show that VSP can provide significant cost savings: in some cases nearly the full holding cost of the stockpile (i.e., VSP effectively maintains the stockpile for free), in other cases nearly the savings of traditional physical inventory pooling. Last, our results prescribe implementing VSP with many locations for large stockpiles, but only a few locations for small stockpiles.  相似文献   

13.
We consider a decentralized two‐period supply chain in which a manufacturer produces a product with benefits of cost learning, and sells it through a retailer facing a price‐dependent demand. The manufacturer's second‐period production cost declines linearly in the first‐period production, but with a random learning rate. The manufacturer may or may not have the inventory carryover option. We formulate the resulting problems as two‐period Stackelberg games and obtain their feedback equilibrium solutions explicitly. We then examine the impact of mean learning rate and learning rate variability on the pricing strategies of the channel members, on the manufacturer's production decisions, and on the retailer's procurement decisions. We show that as the mean learning rate or the learning rate variability increases, the traditional double marginalization problem becomes more severe, leading to greater efficiency loss in the channel. We obtain revenue sharing contracts that can coordinate the dynamic supply chain. In particular, when the manufacturer may hold inventory, we identify two major drivers for inventory carryover: market growth and learning rate variability. Finally, we demonstrate the robustness of our results by examining a model in which cost learning takes place continuously.  相似文献   

14.
We examine the critical role of advance supply signals—such as suppliers’ financial health and production viability—in dynamic supply risk management. The firm operates an inventory system with multiple demand classes and multiple suppliers. The sales are discretionary and the suppliers are susceptible to both systematic and operational risks. We develop a hierarchical Markov model that captures the essential features of advance supply signals, and integrate it with procurement and selling decisions. We characterize the optimal procurement and selling policy, and the strategic relationship between signal‐based forecast, multi‐sourcing, and discretionary selling. We show that higher demand heterogeneity may reduce the value of discretionary selling, and that the mean value‐based forecast may outperform the stationary distribution‐based forecast. This work advances our understanding on when and how to use advance supply signals in dynamic risk management. Future supply risk erodes profitability but enhances the marginal value of current inventory. A signal of future supply shortage raises both base stock and demand rationing levels, thereby boosting the current production and tightening the current sales. Signal‐based dynamic forecast effectively guides the firm's procurement and selling decisions. Its value critically depends on supply volatility and scarcity. Ignoring advance supply signals can result in misleading recommendations and severe losses. Signal‐based dynamic supply forecast should be used when: (a) supply uncertainty is substantial, (b) supply‐demand ratio is moderate, (c) forecast precision is high, and (d) supplier heterogeneity is high.  相似文献   

15.
We investigate the interrelationship of distribution center picking policies and supply chain inventory performance. In particular, we show how the picking sequence in the upstream supply chain link affects the inventory levels of items being replenished to a downstream link for a common “ship‐when‐full” trailer dispatching policy. Perturbing the picking sequence affects items’ inventory levels asymmetrically which causes the aggregate system inventory to vary. We separate the items in replenishment into those units in transit and those awaiting shipment from the upstream distribution step: we call the latter the residual replenishment. We show that the process governing aggregate residual replenishment is Markov and has a stationary distribution that is discrete uniform. Computing the item‐level residual distribution is intractable and so we develop analytical models from which we derive hypotheses for the effectiveness of stable vs. random picking sequences, how item residual replenishment varies with stable picking sequences, and how the aggregate inventory level changes with picking sequence. These suggest a heuristic sequencing algorithm for minimizing inventory, which performs well in simulation tests over a large testbed of parameter sets.  相似文献   

16.
Inventory displayed on the retail sales floor not only performs the classical supply function but also plays a role in affecting consumers’ buying behavior and hence the total demand. Empirical evidence from the retail industry shows that for some types of products, higher levels of on‐shelf inventory have a demand‐increasing effect (“billboard effect”) while for some other types of products, higher levels of on‐shelf inventory have a demand‐decreasing effect (“scarcity effect”). This suggests that retailers may use the amount of shelf stock on display as a tool to influence demand and operate a store backroom to hold the inventory of items not displayed on the shelves, introducing the need for efficient management of the backroom and on‐shelf inventories. The purpose of this study is to address such an issue by considering a periodic‐review inventory system in which demand in each period is stochastic and depends on the amount of inventory displayed on the shelf. We first analyze the problem in a finite‐horizon setting and show under a general demand model that the system inventory is optimally replenished by a base‐stock policy and the shelf stock is controlled by two critical points representing the target levels to raise up/drop down the on‐shelf inventory level. In the infinite‐horizon setting, we find that the optimal policies simplify to stationary base‐stock type policies. Under the billboard effect, we further show that the optimal policy is monotone in the system states. Numerical experiments illustrate the value of smart backroom management strategy and show that significant profit gains can be obtained by jointly managing the backroom and on‐shelf inventories.  相似文献   

17.
We consider the retail planning problem in which the retailer chooses suppliers and determines the production, distribution, and inventory planning for products with uncertain demand to minimize total expected costs. This problem is often faced by large retail chains that carry private‐label products. We formulate this problem as a convex‐mixed integer program and show that it is strongly NP‐hard. We determine a lower bound by applying a Lagrangian relaxation and show that this bound outperforms the standard convex programming relaxation while being computationally efficient. We also establish a worst‐case error bound for the Lagrangian relaxation. We then develop heuristics to generate feasible solutions. Our computational results indicate that our convex programming heuristic yields feasible solutions that are close to optimal with an average suboptimality gap at 3.4%. We also develop managerial insights for practitioners who choose suppliers and make production, distribution, and inventory decisions in the supply chain.  相似文献   

18.
In this article, we study the newsvendor problem with endogenous setting of price and quoted lead‐time. This problem can be observed in situations where a firm orders semi‐finished product prior to the selling season and customizes the product in response to customer orders during the selling season. The total demand during the selling season and the lead‐time required for customization are uncertain. The demand for the product depends not only on the selling price but also on the quoted lead‐time. To set the quoted lead‐time, the firm has to carefully balance the benefit of increasing demand as the quoted lead‐time is reduced against the cost of increased tardiness. Our model enables the firm to determine the optimal selling price, quoted lead‐time, and order quantity simultaneously, and provides a new set of insights to managers.  相似文献   

19.
易变质产品在带运输时间的二级供应链中的订购策略研究   总被引:1,自引:0,他引:1  
研究了带运输时间的易变质产品的二级供应链库存模型。在有限计划期内,为补充下游分销商发出的订单,上游制造商以一定的生产速率进行生产。由于产品运输给分销商时需要花费时间与成本,在开始一段时间内分销商的订单得不到及时补充,只有当制造商的库存量达到最大时,才将产品运输给分销商。目标就是确定最优订购策略使得整个系统的总成本最小。通过分析成本函数的特点,证明了2种特殊情形下最优解的存在及唯一性。最后通过算例验证了最优策略的有效性。  相似文献   

20.
Most retailers suffer from substantial discrepancies between inventory quantities recorded in the system and stocks truly available to customers. Promising full inventory transparency, radio frequency identification (RFID) technology has often been suggested as a remedy to the problem. We consider inventory record inaccuracy in a supply chain model, where a Stackelberg manufacturer sets the wholesale price and a retailer determines how much to stock for sale to customers. We first analyze the impact of inventory record inaccuracy on optimal stocking decisions and profits. By contrasting optimal decisions in a decentralized supply chain with those in an integrated supply chain, we find that inventory record inaccuracy exacerbates the inefficiencies resulting from double marginalization in decentralized supply chains. Assuming RFID technology can eliminate the problem of inventory record inaccuracy, we determine the cost thresholds at which RFID adoption becomes profitable. We show that a decentralized supply chain benefits more from RFID technology, such that RFID adoption improves supply chain coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号