首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
In nonlinear panel data models, the incidental parameter problem remains a challenge to econometricians. Available solutions are often based on ingenious, model‐specific methods. In this paper, we propose a systematic approach to construct moment restrictions on common parameters that are free from the individual fixed effects. This is done by an orthogonal projection that differences out the unknown distribution function of individual effects. Our method applies generally in likelihood models with continuous dependent variables where a condition of non‐surjectivity holds. The resulting method‐of‐moments estimators are root‐N consistent (for fixed T) and asymptotically normal, under regularity conditions that we spell out. Several examples and a small‐scale simulation exercise complete the paper.  相似文献   

2.
This paper considers large N and large T panel data models with unobservable multiple interactive effects, which are correlated with the regressors. In earnings studies, for example, workers' motivation, persistence, and diligence combined to influence the earnings in addition to the usual argument of innate ability. In macroeconomics, interactive effects represent unobservable common shocks and their heterogeneous impacts on cross sections. We consider identification, consistency, and the limiting distribution of the interactive‐effects estimator. Under both large N and large T, the estimator is shown to be consistent, which is valid in the presence of correlations and heteroskedasticities of unknown form in both dimensions. We also derive the constrained estimator and its limiting distribution, imposing additivity coupled with interactive effects. The problem of testing additive versus interactive effects is also studied. In addition, we consider identification and estimation of models in the presence of a grand mean, time‐invariant regressors, and common regressors. Given identification, the rate of convergence and limiting results continue to hold.  相似文献   

3.
This paper presents a new approach to estimation and inference in panel data models with a general multifactor error structure. The unobserved factors and the individual‐specific errors are allowed to follow arbitrary stationary processes, and the number of unobserved factors need not be estimated. The basic idea is to filter the individual‐specific regressors by means of cross‐section averages such that asymptotically as the cross‐section dimension (N) tends to infinity, the differential effects of unobserved common factors are eliminated. The estimation procedure has the advantage that it can be computed by least squares applied to auxiliary regressions where the observed regressors are augmented with cross‐sectional averages of the dependent variable and the individual‐specific regressors. A number of estimators (referred to as common correlated effects (CCE) estimators) are proposed and their asymptotic distributions are derived. The small sample properties of mean group and pooled CCE estimators are investigated by Monte Carlo experiments, showing that the CCE estimators have satisfactory small sample properties even under a substantial degree of heterogeneity and dynamics, and for relatively small values of N and T.  相似文献   

4.
This paper applies some general concepts in decision theory to a linear panel data model. A simple version of the model is an autoregression with a separate intercept for each unit in the cross section, with errors that are independent and identically distributed with a normal distribution. There is a parameter of interest γ and a nuisance parameter τ, a N×K matrix, where N is the cross‐section sample size. The focus is on dealing with the incidental parameters problem created by a potentially high‐dimension nuisance parameter. We adopt a “fixed‐effects” approach that seeks to protect against any sequence of incidental parameters. We transform τ to (δ, ρ, ω), where δ is a J×K matrix of coefficients from the least‐squares projection of τ on a N×J matrix x of strictly exogenous variables, ρ is a K×K symmetric, positive semidefinite matrix obtained from the residual sums of squares and cross‐products in the projection of τ on x, and ω is a (NJ) ×K matrix whose columns are orthogonal and have unit length. The model is invariant under the actions of a group on the sample space and the parameter space, and we find a maximal invariant statistic. The distribution of the maximal invariant statistic does not depend upon ω. There is a unique invariant distribution for ω. We use this invariant distribution as a prior distribution to obtain an integrated likelihood function. It depends upon the observation only through the maximal invariant statistic. We use the maximal invariant statistic to construct a marginal likelihood function, so we can eliminate ω by integration with respect to the invariant prior distribution or by working with the marginal likelihood function. The two approaches coincide. Decision rules based on the invariant distribution for ω have a minimax property. Given a loss function that does not depend upon ω and given a prior distribution for (γ, δ, ρ), we show how to minimize the average—with respect to the prior distribution for (γ, δ, ρ)—of the maximum risk, where the maximum is with respect to ω. There is a family of prior distributions for (δ, ρ) that leads to a simple closed form for the integrated likelihood function. This integrated likelihood function coincides with the likelihood function for a normal, correlated random‐effects model. Under random sampling, the corresponding quasi maximum likelihood estimator is consistent for γ as N→∞, with a standard limiting distribution. The limit results do not require normality or homoskedasticity (conditional on x) assumptions.  相似文献   

5.
This paper extends the conditional logit approach (Rasch, Andersen, Chamberlain) used in panel data models of binary variables with correlated fixed effects and strictly exogenous regressors. In a two‐period two‐state model, necessary and sufficient conditions on the joint distribution function of the individual‐and‐period specific shocks are given such that the sum of individual binary variables across time is a sufficient statistic for the individual effect. By extending a result of Chamberlain, it is shown that root‐n consistent regular estimators can be constructed in panel binary models if and only if the property of sufficiency holds. In applied work, the estimation method amounts to quasi‐differencing the binary variables as if they were continuous variables and transforming a panel data model into a cross‐section model. Semiparametric approaches can then be readily applied.  相似文献   

6.
This paper develops an inferential theory for factor models of large dimensions. The principal components estimator is considered because it is easy to compute and is asymptotically equivalent to the maximum likelihood estimator (if normality is assumed). We derive the rate of convergence and the limiting distributions of the estimated factors, factor loadings, and common components. The theory is developed within the framework of large cross sections (N) and a large time dimension (T), to which classical factor analysis does not apply. We show that the estimated common components are asymptotically normal with a convergence rate equal to the minimum of the square roots of N and T. The estimated factors and their loadings are generally normal, although not always so. The convergence rate of the estimated factors and factor loadings can be faster than that of the estimated common components. These results are obtained under general conditions that allow for correlations and heteroskedasticities in both dimensions. Stronger results are obtained when the idiosyncratic errors are serially uncorrelated and homoskedastic. A necessary and sufficient condition for consistency is derived for large N but fixed T.  相似文献   

7.
We develop an econometric methodology to infer the path of risk premia from a large unbalanced panel of individual stock returns. We estimate the time‐varying risk premia implied by conditional linear asset pricing models where the conditioning includes both instruments common to all assets and asset‐specific instruments. The estimator uses simple weighted two‐pass cross‐sectional regressions, and we show its consistency and asymptotic normality under increasing cross‐sectional and time series dimensions. We address consistent estimation of the asymptotic variance by hard thresholding, and testing for asset pricing restrictions induced by the no‐arbitrage assumption. We derive the restrictions given by a continuum of assets in a multi‐period economy under an approximate factor structure robust to asset repackaging. The empirical analysis on returns for about ten thousand U.S. stocks from July 1964 to December 2009 shows that risk premia are large and volatile in crisis periods. They exhibit large positive and negative strays from time‐invariant estimates, follow the macroeconomic cycles, and do not match risk premia estimates on standard sets of portfolios. The asset pricing restrictions are rejected for a conditional four‐factor model capturing market, size, value, and momentum effects.  相似文献   

8.
The conventional heteroskedasticity‐robust (HR) variance matrix estimator for cross‐sectional regression (with or without a degrees‐of‐freedom adjustment), applied to the fixed‐effects estimator for panel data with serially uncorrelated errors, is inconsistent if the number of time periods T is fixed (and greater than 2) as the number of entities n increases. We provide a bias‐adjusted HR estimator that is ‐consistent under any sequences (n, T) in which n and/or T increase to ∞. This estimator can be extended to handle serial correlation of fixed order.  相似文献   

9.
In this paper, we study the least squares (LS) estimator in a linear panel regression model with unknown number of factors appearing as interactive fixed effects. Assuming that the number of factors used in estimation is larger than the true number of factors in the data, we establish the limiting distribution of the LS estimator for the regression coefficients as the number of time periods and the number of cross‐sectional units jointly go to infinity. The main result of the paper is that under certain assumptions, the limiting distribution of the LS estimator is independent of the number of factors used in the estimation as long as this number is not underestimated. The important practical implication of this result is that for inference on the regression coefficients, one does not necessarily need to estimate the number of interactive fixed effects consistently.  相似文献   

10.
We develop a new parametric estimation procedure for option panels observed with error. We exploit asymptotic approximations assuming an ever increasing set of option prices in the moneyness (cross‐sectional) dimension, but with a fixed time span. We develop consistent estimators for the parameters and the dynamic realization of the state vector governing the option price dynamics. The estimators converge stably to a mixed‐Gaussian law and we develop feasible estimators for the limiting variance. We also provide semiparametric tests for the option price dynamics based on the distance between the spot volatility extracted from the options and one constructed nonparametrically from high‐frequency data on the underlying asset. Furthermore, we develop new tests for the day‐by‐day model fit over specific regions of the volatility surface and for the stability of the risk‐neutral dynamics over time. A comprehensive Monte Carlo study indicates that the inference procedures work well in empirically realistic settings. In an empirical application to S&P 500 index options, guided by the new diagnostic tests, we extend existing asset pricing models by allowing for a flexible dynamic relation between volatility and priced jump tail risk. Importantly, we document that the priced jump tail risk typically responds in a more pronounced and persistent manner than volatility to large negative market shocks.  相似文献   

11.
This paper develops a new estimation procedure for characteristic‐based factor models of stock returns. We treat the factor model as a weighted additive nonparametric regression model, with the factor returns serving as time‐varying weights and a set of univariate nonparametric functions relating security characteristic to the associated factor betas. We use a time‐series and cross‐sectional pooled weighted additive nonparametric regression methodology to simultaneously estimate the factor returns and characteristic‐beta functions. By avoiding the curse of dimensionality, our methodology allows for a larger number of factors than existing semiparametric methods. We apply the technique to the three‐factor Fama–French model, Carhart's four‐factor extension of it that adds a momentum factor, and a five‐factor extension that adds an own‐volatility factor. We find that momentum and own‐volatility factors are at least as important, if not more important, than size and value in explaining equity return comovements. We test the multifactor beta pricing theory against a general alternative using a new nonparametric test.  相似文献   

12.
Nonseparable panel models are important in a variety of economic settings, including discrete choice. This paper gives identification and estimation results for nonseparable models under time‐homogeneity conditions that are like “time is randomly assigned” or “time is an instrument.” Partial‐identification results for average and quantile effects are given for discrete regressors, under static or dynamic conditions, in fully nonparametric and in semiparametric models, with time effects. It is shown that the usual, linear, fixed‐effects estimator is not a consistent estimator of the identified average effect, and a consistent estimator is given. A simple estimator of identified quantile treatment effects is given, providing a solution to the important problem of estimating quantile treatment effects from panel data. Bounds for overall effects in static and dynamic models are given. The dynamic bounds provide a partial‐identification solution to the important problem of estimating the effect of state dependence in the presence of unobserved heterogeneity. The impact of T, the number of time periods, is shown by deriving shrinkage rates for the identified set as T grows. We also consider semiparametric, discrete‐choice models and find that semiparametric panel bounds can be much tighter than nonparametric bounds. Computationally convenient methods for semiparametric models are presented. We propose a novel inference method that applies in panel data and other settings and show that it produces uniformly valid confidence regions in large samples. We give empirical illustrations.  相似文献   

13.
This paper introduces time‐varying grouped patterns of heterogeneity in linear panel data models. A distinctive feature of our approach is that group membership is left unrestricted. We estimate the parameters of the model using a “grouped fixed‐effects” estimator that minimizes a least squares criterion with respect to all possible groupings of the cross‐sectional units. Recent advances in the clustering literature allow for fast and efficient computation. We provide conditions under which our estimator is consistent as both dimensions of the panel tend to infinity, and we develop inference methods. Finally, we allow for grouped patterns of unobserved heterogeneity in the study of the link between income and democracy across countries.  相似文献   

14.
We propose a novel technique to boost the power of testing a high‐dimensional vector H : θ = 0 against sparse alternatives where the null hypothesis is violated by only a few components. Existing tests based on quadratic forms such as the Wald statistic often suffer from low powers due to the accumulation of errors in estimating high‐dimensional parameters. More powerful tests for sparse alternatives such as thresholding and extreme value tests, on the other hand, require either stringent conditions or bootstrap to derive the null distribution and often suffer from size distortions due to the slow convergence. Based on a screening technique, we introduce a “power enhancement component,” which is zero under the null hypothesis with high probability, but diverges quickly under sparse alternatives. The proposed test statistic combines the power enhancement component with an asymptotically pivotal statistic, and strengthens the power under sparse alternatives. The null distribution does not require stringent regularity conditions, and is completely determined by that of the pivotal statistic. The proposed methods are then applied to testing the factor pricing models and validating the cross‐sectional independence in panel data models.  相似文献   

15.
Many approaches to estimation of panel models are based on an average or integrated likelihood that assigns weights to different values of the individual effects. Fixed effects, random effects, and Bayesian approaches all fall into this category. We provide a characterization of the class of weights (or priors) that produce estimators that are first‐order unbiased. We show that such bias‐reducing weights will depend on the data in general unless an orthogonal reparameterization or an essentially equivalent condition is available. Two intuitively appealing weighting schemes are discussed. We argue that asymptotically valid confidence intervals can be read from the posterior distribution of the common parameters when N and T grow at the same rate. Next, we show that random effects estimators are not bias reducing in general and we discuss important exceptions. Moreover, the bias depends on the Kullback–Leibler distance between the population distribution of the effects and its best approximation in the random effects family. Finally, we show that, in general, standard random effects estimation of marginal effects is inconsistent for large T, whereas the posterior mean of the marginal effect is large‐T consistent, and we provide conditions for bias reduction. Some examples and Monte Carlo experiments illustrate the results.  相似文献   

16.
Fixed effects estimators of panel models can be severely biased because of the well‐known incidental parameters problem. We show that this bias can be reduced by using a panel jackknife or an analytical bias correction motivated by large T. We give bias corrections for averages over the fixed effects, as well as model parameters. We find large bias reductions from using these approaches in examples. We consider asymptotics where T grows with n, as an approximation to the properties of the estimators in econometric applications. We show that if T grows at the same rate as n, the fixed effects estimator is asymptotically biased, so that asymptotic confidence intervals are incorrect, but that they are correct for the panel jackknife. We show T growing faster than n1/3 suffices for correctness of the analytic correction, a property we also conjecture for the jackknife.  相似文献   

17.
We study a model of lumpy investment wherein establishments face persistent shocks to common and plant‐specific productivity, and nonconvex adjustment costs lead them to pursue generalized (S, s) investment rules. We allow persistent heterogeneity in both capital and total factor productivity alongside low‐level investments exempt from adjustment costs to develop the first model consistent with the cross‐sectional distribution of establishment investment rates. Examining the implications of lumpy investment for aggregate dynamics in this setting, we find that they remain substantial when factor supply considerations are ignored, but are quantitatively irrelevant in general equilibrium. The substantial implications of general equilibrium extend beyond the dynamics of aggregate series. While the presence of idiosyncratic shocks makes the time‐averaged distribution of plant‐level investment rates largely invariant to market‐clearing movements in real wages and interest rates, we show that the dynamics of plants' investments differ sharply in their presence. Thus, model‐based estimations of capital adjustment costs involving panel data may be quite sensitive to the assumption about equilibrium. Our analysis also offers new insights about how nonconvex adjustment costs influence investment at the plant. When establishments face idiosyncratic productivity shocks consistent with existing estimates, we find that nonconvex costs do not cause lumpy investments, but act to eliminate them.  相似文献   

18.
This paper develops a generalization of the widely used difference‐in‐differences method for evaluating the effects of policy changes. We propose a model that allows the control and treatment groups to have different average benefits from the treatment. The assumptions of the proposed model are invariant to the scaling of the outcome. We provide conditions under which the model is nonparametrically identified and propose an estimator that can be applied using either repeated cross section or panel data. Our approach provides an estimate of the entire counterfactual distribution of outcomes that would have been experienced by the treatment group in the absence of the treatment and likewise for the untreated group in the presence of the treatment. Thus, it enables the evaluation of policy interventions according to criteria such as a mean–variance trade‐off. We also propose methods for inference, showing that our estimator for the average treatment effect is root‐N consistent and asymptotically normal. We consider extensions to allow for covariates, discrete dependent variables, and multiple groups and time periods.  相似文献   

19.
This paper studies a shape‐invariant Engel curve system with endogenous total expenditure, in which the shape‐invariant specification involves a common shift parameter for each demographic group in a pooled system of nonparametric Engel curves. We focus on the identification and estimation of both the nonparametric shapes of the Engel curves and the parametric specification of the demographic scaling parameters. The identification condition relates to the bounded completeness and the estimation procedure applies the sieve minimum distance estimation of conditional moment restrictions, allowing for endogeneity. We establish a new root mean squared convergence rate for the nonparametric instrumental variable regression when the endogenous regressor could have unbounded support. Root‐n asymptotic normality and semiparametric efficiency of the parametric components are also given under a set of “low‐level” sufficient conditions. Our empirical application using the U.K. Family Expenditure Survey shows the importance of adjusting for endogeneity in terms of both the nonparametric curvatures and the demographic parameters of systems of Engel curves.  相似文献   

20.
Are there times when durable spending is less responsive to economic stimulus? We argue that aggregate durable expenditures respond more sluggishly to economic shocks during recessions because microeconomic frictions lead to declines in the frequency of households' durable adjustment. We show this by first using indirect inference to estimate a heterogeneous agent incomplete markets model with fixed costs of durable adjustment to match consumption dynamics in PSID microdata. We then show that aggregating this model delivers an extremely procyclical Impulse Response Function (IRF) of durable spending to aggregate shocks. For example, the response of durable spending to an income shock in 1999 is estimated to be almost twice as large as if it occurred in 2009. This procyclical IRF holds in response to standard business cycle shocks as well as in response to various policy shocks, and it is robust to general equilibrium. After estimating this robust theoretical implication of micro frictions, we provide additional direct empirical evidence for its importance using both cross‐sectional and time‐series data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号