首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the asymptotic properties of the quasi‐maximum likelihood estimator of (generalized autoregressive conditional heteroscedasticity) GARCH(1, 1) models without strict stationarity constraints and considers applications to testing problems. The estimator is unrestricted in the sense that the value of the intercept, which cannot be consistently estimated in the explosive case, is not fixed. A specific behavior of the estimator of the GARCH coefficients is obtained at the boundary of the stationarity region, but, except for the intercept, this estimator remains consistent and asymptotically normal in every situation. The asymptotic variance is different in the stationary and nonstationary situations, but is consistently estimated with the same estimator in both cases. Tests of strict stationarity and nonstationarity are proposed. The tests developed for the classical GARCH(1, 1) model are able to detect nonstationarity in more general GARCH models. A numerical illustration based on stock indices and individual stock returns is proposed.  相似文献   

2.
This paper makes the following original contributions to the literature. (i) We develop a simpler analytical characterization and numerical algorithm for Bayesian inference in structural vector autoregressions (VARs) that can be used for models that are overidentified, just‐identified, or underidentified. (ii) We analyze the asymptotic properties of Bayesian inference and show that in the underidentified case, the asymptotic posterior distribution of contemporaneous coefficients in an n‐variable VAR is confined to the set of values that orthogonalize the population variance–covariance matrix of ordinary least squares residuals, with the height of the posterior proportional to the height of the prior at any point within that set. For example, in a bivariate VAR for supply and demand identified solely by sign restrictions, if the population correlation between the VAR residuals is positive, then even if one has available an infinite sample of data, any inference about the demand elasticity is coming exclusively from the prior distribution. (iii) We provide analytical characterizations of the informative prior distributions for impulse‐response functions that are implicit in the traditional sign‐restriction approach to VARs, and we note, as a special case of result (ii), that the influence of these priors does not vanish asymptotically. (iv) We illustrate how Bayesian inference with informative priors can be both a strict generalization and an unambiguous improvement over frequentist inference in just‐identified models. (v) We propose that researchers need to explicitly acknowledge and defend the role of prior beliefs in influencing structural conclusions and we illustrate how this could be done using a simple model of the U.S. labor market.  相似文献   

3.
This paper investigates asymptotic properties of the maximum likelihood estimator and the quasi‐maximum likelihood estimator for the spatial autoregressive model. The rates of convergence of those estimators may depend on some general features of the spatial weights matrix of the model. It is important to make the distinction with different spatial scenarios. Under the scenario that each unit will be influenced by only a few neighboring units, the estimators may have ‐rate of convergence and be asymptotically normal. When each unit can be influenced by many neighbors, irregularity of the information matrix may occur and various components of the estimators may have different rates of convergence.  相似文献   

4.
This paper develops the fixed‐smoothing asymptotics in a two‐step generalized method of moments (GMM) framework. Under this type of asymptotics, the weighting matrix in the second‐step GMM criterion function converges weakly to a random matrix and the two‐step GMM estimator is asymptotically mixed normal. Nevertheless, the Wald statistic, the GMM criterion function statistic, and the Lagrange multiplier statistic remain asymptotically pivotal. It is shown that critical values from the fixed‐smoothing asymptotic distribution are high order correct under the conventional increasing‐smoothing asymptotics. When an orthonormal series covariance estimator is used, the critical values can be approximated very well by the quantiles of a noncentral F distribution. A simulation study shows that statistical tests based on the new fixed‐smoothing approximation are much more accurate in size than existing tests.  相似文献   

5.
This paper develops a general method for constructing exactly similar tests based on the conditional distribution of nonpivotal statistics in a simultaneous equations model with normal errors and known reduced‐form covariance matrix. These tests are shown to be similar under weak‐instrument asymptotics when the reduced‐form covariance matrix is estimated and the errors are non‐normal. The conditional test based on the likelihood ratio statistic is particularly simple and has good power properties. Like the score test, it is optimal under the usual local‐to‐null asymptotics, but it has better power when identification is weak.  相似文献   

6.
We establish consistency and asymptotic normality of the quasi‐maximum likelihood estimator in the linear ARCH model. Contrary to the existing literature, we allow the parameters to be in the region where no stationary version of the process exists. This implies that the estimator is always asymptotically normal.  相似文献   

7.
When a continuous‐time diffusion is observed only at discrete dates, in most cases the transition distribution and hence the likelihood function of the observations is not explicitly computable. Using Hermite polynomials, I construct an explicit sequence of closed‐form functions and show that it converges to the true (but unknown) likelihood function. I document that the approximation is very accurate and prove that maximizing the sequence results in an estimator that converges to the true maximum likelihood estimator and shares its asymptotic properties. Monte Carlo evidence reveals that this method outperforms other approximation schemes in situations relevant for financial models.  相似文献   

8.
This paper considers tests of the parameter on an endogenous variable in an instrumental variables regression model. The focus is on determining tests that have some optimal power properties. We start by considering a model with normally distributed errors and known error covariance matrix. We consider tests that are similar and satisfy a natural rotational invariance condition. We determine a two‐sided power envelope for invariant similar tests. This allows us to assess and compare the power properties of tests such as the conditional likelihood ratio (CLR), the Lagrange multiplier, and the Anderson–Rubin tests. We find that the CLR test is quite close to being uniformly most powerful invariant among a class of two‐sided tests. The finite‐sample results of the paper are extended to the case of unknown error covariance matrix and possibly nonnormal errors via weak instrument asymptotics. Strong instrument asymptotic results also are provided because we seek tests that perform well under both weak and strong instruments.  相似文献   

9.
This paper discusses a consistent bootstrap implementation of the likelihood ratio (LR) co‐integration rank test and associated sequential rank determination procedure of Johansen (1996). The bootstrap samples are constructed using the restricted parameter estimates of the underlying vector autoregressive (VAR) model that obtain under the reduced rank null hypothesis. A full asymptotic theory is provided that shows that, unlike the bootstrap procedure in Swensen (2006) where a combination of unrestricted and restricted estimates from the VAR model is used, the resulting bootstrap data are I(1) and satisfy the null co‐integration rank, regardless of the true rank. This ensures that the bootstrap LR test is asymptotically correctly sized and that the probability that the bootstrap sequential procedure selects a rank smaller than the true rank converges to zero. Monte Carlo evidence suggests that our bootstrap procedures work very well in practice.  相似文献   

10.
In an effort to improve the small sample properties of generalized method of moments (GMM) estimators, a number of alternative estimators have been suggested. These include empirical likelihood (EL), continuous updating, and exponential tilting estimators. We show that these estimators share a common structure, being members of a class of generalized empirical likelihood (GEL) estimators. We use this structure to compare their higher order asymptotic properties. We find that GEL has no asymptotic bias due to correlation of the moment functions with their Jacobian, eliminating an important source of bias for GMM in models with endogeneity. We also find that EL has no asymptotic bias from estimating the optimal weight matrix, eliminating a further important source of bias for GMM in panel data models. We give bias corrected GMM and GEL estimators. We also show that bias corrected EL inherits the higher order property of maximum likelihood, that it is higher order asymptotically efficient relative to the other bias corrected estimators.  相似文献   

11.
This paper considers inference in a broad class of nonregular models. The models considered are nonregular in the sense that standard test statistics have asymptotic distributions that are discontinuous in some parameters. It is shown in Andrews and Guggenberger (2009a) that standard fixed critical value, subsampling, and m out of n bootstrap methods often have incorrect asymptotic size in such models. This paper introduces general methods of constructing tests and confidence intervals that have correct asymptotic size. In particular, we consider a hybrid subsampling/fixed‐critical‐value method and size‐correction methods. The paper discusses two examples in detail. They are (i) confidence intervals in an autoregressive model with a root that may be close to unity and conditional heteroskedasticity of unknown form and (ii) tests and confidence intervals based on a post‐conservative model selection estimator.  相似文献   

12.
This paper studies the estimation of dynamic discrete games of incomplete information. Two main econometric issues appear in the estimation of these models: the indeterminacy problem associated with the existence of multiple equilibria and the computational burden in the solution of the game. We propose a class of pseudo maximum likelihood (PML) estimators that deals with these problems, and we study the asymptotic and finite sample properties of several estimators in this class. We first focus on two‐step PML estimators, which, although they are attractive for their computational simplicity, have some important limitations: they are seriously biased in small samples; they require consistent nonparametric estimators of players' choice probabilities in the first step, which are not always available; and they are asymptotically inefficient. Second, we show that a recursive extension of the two‐step PML, which we call nested pseudo likelihood (NPL), addresses those drawbacks at a relatively small additional computational cost. The NPL estimator is particularly useful in applications where consistent nonparametric estimates of choice probabilities either are not available or are very imprecise, e.g., models with permanent unobserved heterogeneity. Finally, we illustrate these methods in Monte Carlo experiments and in an empirical application to a model of firm entry and exit in oligopoly markets using Chilean data from several retail industries.  相似文献   

13.
This paper proposes an asymptotically efficient method for estimating models with conditional moment restrictions. Our estimator generalizes the maximum empirical likelihood estimator (MELE) of Qin and Lawless (1994). Using a kernel smoothing method, we efficiently incorporate the information implied by the conditional moment restrictions into our empirical likelihood‐based procedure. This yields a one‐step estimator which avoids estimating optimal instruments. Our likelihood ratio‐type statistic for parametric restrictions does not require the estimation of variance, and achieves asymptotic pivotalness implicitly. The estimation and testing procedures we propose are normalization invariant. Simulation results suggest that our new estimator works remarkably well in finite samples.  相似文献   

14.
In this paper a bootstrap algorithm for a reduced rank vector autoregressive model with a restricted linear trend and independent, identically distributed errors is analyzed. For testing the cointegration rank, the asymptotic distribution under the hypothesis is the same as for the usual likelihood ratio test, so that the bootstrap is consistent. It is furthermore shown that a bootstrap procedure for determining the rank is asymptotically consistent in the sense that the probability of choosing the rank smaller than the true one converges to zero.  相似文献   

15.
L Kopylev  J Fox 《Risk analysis》2009,29(1):18-25
It is well known that, under appropriate regularity conditions, the asymptotic distribution for the likelihood ratio statistic is χ2. This result is used in EPA's benchmark dose software to obtain a lower confidence bound (BMDL) for the benchmark dose (BMD) by the profile likelihood method. Recently, based on work by Self and Liang, it has been demonstrated that the asymptotic distribution of the likelihood ratio remains the same if some of the regularity conditions are violated, that is, when true values of some nuisance parameters are on the boundary. That is often the situation for BMD analysis of cancer bioassay data. In this article, we study by simulation the coverage of one- and two-sided confidence intervals for BMD when some of the model parameters have true values on the boundary of a parameter space. Fortunately, because two-sided confidence intervals (size 1–2α) have coverage close to the nominal level when there are 50 animals in each group, the coverage of nominal 1−α one-sided intervals is bounded between roughly 1–2α and 1. In many of the simulation scenarios with a nominal one-sided confidence level of 95%, that is, α= 0.05, coverage of the BMDL was close to 1, but for some scenarios coverage was close to 90%, both for a group size of 50 animals and asymptotically (group size 100,000). Another important observation is that when the true parameter is below the boundary, as with the shape parameter of a log-logistic model, the coverage of BMDL in a constrained model (a case of model misspecification not uncommon in BMDS analyses) may be very small and even approach 0 asymptotically. We also discuss that whenever profile likelihood is used for one-sided tests, the Self and Liang methodology is needed to derive the correct asymptotic distribution.  相似文献   

16.
The delta method and continuous mapping theorem are among the most extensively used tools in asymptotic derivations in econometrics. Extensions of these methods are provided for sequences of functions that are commonly encountered in applications and where the usual methods sometimes fail. Important examples of failure arise in the use of simulation‐based estimation methods such as indirect inference. The paper explores the application of these methods to the indirect inference estimator (IIE) in first order autoregressive estimation. The IIE uses a binding function that is sample size dependent. Its limit theory relies on a sequence‐based delta method in the stationary case and a sequence‐based implicit continuous mapping theorem in unit root and local to unity cases. The new limit theory shows that the IIE achieves much more than (partial) bias correction. It changes the limit theory of the maximum likelihood estimator (MLE) when the autoregressive coefficient is in the locality of unity, reducing the bias and the variance of the MLE without affecting the limit theory of the MLE in the stationary case. Thus, in spite of the fact that the IIE is a continuously differentiable function of the MLE, the limit distribution of the IIE is not simply a scale multiple of the MLE, but depends implicitly on the full binding function mapping. The unit root case therefore represents an important example of the failure of the delta method and shows the need for an implicit mapping extension of the continuous mapping theorem.  相似文献   

17.
Threshold models have a wide variety of applications in economics. Direct applications include models of separating and multiple equilibria. Other applications include empirical sample splitting when the sample split is based on a continuously‐distributed variable such as firm size. In addition, threshold models may be used as a parsimonious strategy for nonparametric function estimation. For example, the threshold autoregressive model (TAR) is popular in the nonlinear time series literature. Threshold models also emerge as special cases of more complex statistical frameworks, such as mixture models, switching models, Markov switching models, and smooth transition threshold models. It may be important to understand the statistical properties of threshold models as a preliminary step in the development of statistical tools to handle these more complicated structures. Despite the large number of potential applications, the statistical theory of threshold estimation is undeveloped. It is known that threshold estimates are super‐consistent, but a distribution theory useful for testing and inference has yet to be provided. This paper develops a statistical theory for threshold estimation in the regression context. We allow for either cross‐section or time series observations. Least squares estimation of the regression parameters is considered. An asymptotic distribution theory for the regression estimates (the threshold and the regression slopes) is developed. It is found that the distribution of the threshold estimate is nonstandard. A method to construct asymptotic confidence intervals is developed by inverting the likelihood ratio statistic. It is shown that this yields asymptotically conservative confidence regions. Monte Carlo simulations are presented to assess the accuracy of the asymptotic approximations. The empirical relevance of the theory is illustrated through an application to the multiple equilibria growth model of Durlauf and Johnson (1995).  相似文献   

18.
In this paper we derive the asymptotic properties of within groups (WG), GMM, and LIML estimators for an autoregressive model with random effects when both T and N tend to infinity. GMM and LIML are consistent and asymptotically equivalent to the WG estimator. When T/N→ 0 the fixed T results for GMM and LIML remain valid, but WG, although consistent, has an asymptotic bias in its asymptotic distribution. When T/N tends to a positive constant, the WG, GMM, and LIML estimators exhibit negative asymptotic biases of order 1/T, 1/N, and 1/(2NT), respectively. In addition, the crude GMM estimator that neglects the autocorrelation in first differenced errors is inconsistent as T/Nc>0, despite being consistent for fixed T. Finally, we discuss the properties of a random effects pseudo MLE with unrestricted initial conditions when both T and N tend to infinity.  相似文献   

19.
This paper considers issues related to estimation, inference, and computation with multiple structural changes that occur at unknown dates in a system of equations. Changes can occur in the regression coefficients and/or the covariance matrix of the errors. We also allow arbitrary restrictions on these parameters, which permits the analysis of partial structural change models, common breaks that occur in all equations, breaks that occur in a subset of equations, and so forth. The method of estimation is quasi‐maximum likelihood based on Normal errors. The limiting distributions are obtained under more general assumptions than previous studies. For testing, we propose likelihood ratio type statistics to test the null hypothesis of no structural change and to select the number of changes. Structural change tests with restrictions on the parameters can be constructed to achieve higher power when prior information is present. For computation, an algorithm for an efficient procedure is proposed to construct the estimates and test statistics. We also introduce a novel locally ordered breaks model, which allows the breaks in different equations to be related yet not occurring at the same dates.  相似文献   

20.
Kevin M. Crofton 《Risk analysis》2012,32(10):1784-1797
Traditional additivity models provide little flexibility in modeling the dose–response relationships of the single agents in a mixture. While the flexible single chemical required (FSCR) methods allow greater flexibility, its implicit nature is an obstacle in the formation of the parameter covariance matrix, which forms the basis for many statistical optimality design criteria. The goal of this effort is to develop a method for constructing the parameter covariance matrix for the FSCR models, so that (local) alphabetic optimality criteria can be applied. Data from Crofton et al. are provided as motivation; in an experiment designed to determine the effect of 18 polyhalogenated aromatic hydrocarbons on serum total thyroxine (T4), the interaction among the chemicals was statistically significant. Gennings et al. fit the FSCR interaction threshold model to the data. The resulting estimate of the interaction threshold was positive and within the observed dose region, providing evidence of a dose‐dependent interaction. However, the corresponding likelihood‐ratio‐based confidence interval was wide and included zero. In order to more precisely estimate the location of the interaction threshold, supplemental data are required. Using the available data as the first stage, the Ds‐optimal second‐stage design criterion was applied to minimize the variance of the hypothesized interaction threshold. Practical concerns associated with the resulting design are discussed and addressed using the penalized optimality criterion. Results demonstrate that the penalized Ds‐optimal second‐stage design can be used to more precisely define the interaction threshold while maintaining the characteristics deemed important in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号