首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A generalized mixed regression estimator for the estimation of the regression coefficients in the linear regression model with incomplete prior information is proposed and its properties are studied considering the risk under the general quadratic loss function when the disturbances are small and non normal.  相似文献   

2.
Stein-rule philosophy and mixed regression technique are combined to develop two families of improved estimators of regression coefficients in the linear regression model under incomplete prior information. The properties of these estimators are studied when disturbances are small and non-normal. Conditions for their dominance over mixed regression estimator are derived taking risk as the criterion for performance.  相似文献   

3.
This paper considers the problem of estimating a nonlinear statistical model subject to stochastic linear constraints among unknown parameters. These constraints represent prior information which originates from a previous estimation of the same model using an alternative database. One feature of this specification allows for the disign matrix of stochastic linear restrictions to be estimated. The mixed regression technique and the maximum likelihood approach are used to derive the estimator for both the model coefficients and the unknown elements of this design matrix. The proposed estimator whose asymptotic properties are studied, contains as a special case the conventional mixed regression estimator based on a fixed design matrix. A new test of compatibility between prior and sample information is also introduced. Thesuggested estimator is tested empirically with both simulated and actual marketing data.  相似文献   

4.
This paper considers the problem of estimating a nonlinear statistical model subject to stochastic linear constraints among unknown parameters. These constraints represent prior information which originates from a previous estimation of the same model using an alternative database. One feature of this specification allows for the disign matrix of stochastic linear restrictions to be estimated. The mixed regression technique and the maximum likelihood approach are used to derive the estimator for both the model coefficients and the unknown elements of this design matrix. The proposed estimator whose asymptotic properties are studied, contains as a special case the conventional mixed regression estimator based on a fixed design matrix. A new test of compatibility between prior and sample information is also introduced. Thesuggested estimator is tested empirically with both simulated and actual marketing data.  相似文献   

5.
We consider the estimation of coefficients in a linear regression model when some responses on the study variable are missing and some prior information in the form of lower and upper bounds for the average values of missing responses is available. Employing the mixed regression framework, we present five estimators for the vector of regression coefficients. Their exact as well as asymptotic properties are discussed and superiority of one estimator over the other is examined.  相似文献   

6.
In this article, we develop a Bayesian analysis in autoregressive model with explanatory variables. When σ2 is known, we consider a normal prior and give the Bayesian estimator for the regression coefficients of the model. For the case σ2 is unknown, another Bayesian estimator is given for all unknown parameters under a conjugate prior. Bayesian model selection problem is also being considered under the double-exponential priors. By the convergence of ρ-mixing sequence, the consistency and asymptotic normality of the Bayesian estimators of the regression coefficients are proved. Simulation results indicate that our Bayesian estimators are not strongly dependent on the priors, and are robust.  相似文献   

7.
We consider the estimation of the error variance of a linear regression model where prior information is available in the form of an (uncertain) inequality constraint on the coefficients. Previous studies on this and other related problems use the squared error loss in comparing estimator’s performance. Here, by adopting the asymmetric LINEX loss function, we derive and numerically evaluate the exact risks of the inequality constrained estimator and the inequality pre-test estimator which results after a preliminary test for an inequality constraint on the coefficients. The risks based on squared error loss are special cases of our results, and we draw appropriate comparisons.  相似文献   

8.
Ridge regression is re-examined and ridge estimators based on prior information are introduced. A necessary and sufficient condition is given for such ridge estimators to yield estimators of every nonnull linear combination of the regression coefficients with smaller mean square error than that of the Gauss-Markov best linear unbiased estimator.  相似文献   

9.
A Bayesian formulation of the canonical form of the standard regression model is used to compare various Stein-type estimators and the ridge estimator of regression coefficients, A particular (“constant prior”) Stein-type estimator having the same pattern of shrinkage as the ridge estimator is recommended for use.  相似文献   

10.
Abstract. The random x regression model is approached through the group of rotations of the eigenvectors for the x ‐covariance matrix together with scale transformations for each of the corresponding regression coefficients. The partial least squares model can be constructed from the orbits of this group. A generalization of Pitman's Theorem says that the best equivariant estimator under a group is given by the Bayes estimator with the group's invariant measure as the prior. A straightforward application of this theorem turns out to be impossible since the relevant invariant prior leads to a non‐defined posterior. Nevertheless we can devise an approximate scale group with a proper invariant prior leading to a well‐defined posterior distribution with a finite mean. This Bayes estimator is explored using Markov chain Monte Carlo technique. The estimator seems to require heavy computations, but can be argued to have several nice properties. It is also a valid estimator when p>n.  相似文献   

11.
It is developed that non-sample prior information about regression vector-parameter, usually in the form of constraints, improves the risk performance of the ordinary least squares estimator (OLSE) when it is shrunken. However, in practice, it may happen that both multicollinearity and outliers exist simultaneously in the data. In such a situation, the use of robust ridge estimator is suggested to overcome the undesirable effects of the OLSE. In this article, some prior information in the form of constraints is employed to improve the performance of this estimator in the multiple regression model. In this regard, shrinkage ridge robust estimators are defined. Advantages of the proposed estimators over the usual robust ridge estimator are also investigated using Monte-Carlo simulation as well as a real data example.  相似文献   

12.
Neglecting heteroscedasticity of error terms may imply the wrong identification of a regression model (see appendix). Employment of (heteroscedasticity resistent) White's estimator of covariance matrix of estimates of regression coefficients may lead to the correct decision about the significance of individual explanatory variables under heteroscedasticity. However, White's estimator of covariance matrix was established for least squares (LS)-regression analysis (in the case when error terms are normally distributed, LS- and maximum likelihood (ML)-analysis coincide and hence then White's estimate of covariance matrix is available for ML-regression analysis, tool). To establish White's-type estimate for another estimator of regression coefficients requires Bahadur representation of the estimator in question, under heteroscedasticity of error terms. The derivation of Bahadur representation for other (robust) estimators requires some tools. As the key too proved to be a tight approximation of the empirical distribution function (d.f.) of residuals by the theoretical d.f. of the error terms of the regression model. We need the approximation to be uniform in the argument of d.f. as well as in regression coefficients. The present paper offers this approximation for the situation when the error terms are heteroscedastic.  相似文献   

13.
Swindel (1976) introduced a modified ridge regression estimator based on prior information. A necessary and sufficient condition is derived for Swindel's proposed estimator to have lower risk than the conventional ordinary ridge regression estimator when both estimators are computed using the same value of k.  相似文献   

14.
In this paper, we introduce a new Liu-type estimator called modified Liu estimator based on prior information for the vector of parameters in a linear regression model and discuss its properties. Furthermore, we obtain that our new estimator is superior, in the mean square error matrix sense, to the least squares estimator, Liu estimator, ridge estimator and modified ridge estimator. Finally, a numerical example and a Monte Carlo simulation are done to illustrate some of the theoretical results.  相似文献   

15.
In the presence of multicollinearity the literature points to principal component regression (PCR) as an estimation method for the regression coefficients of a multiple regression model. Due to ambiguities in the interpretation, involved by the orthogonal transformation of the set of explanatory variables, the method could not yet gain wide acceptance. Factor analysis regression (FAR) provides a model-based estimation method which is particularly tailored to overcome multicollinearity in an errors-in-variables setting. In this paper two feasible versions of a FAR estimator are compared with the OLS estimator and the PCR estimator by means of Monte Carlo simulation. While the PCR estimator performs best in cases of strong and high multicollinearity, the Thomson-based FAR estimator proves to be superior when the regressors are moderately correlated.  相似文献   

16.
In this article, we employ a regression formulation to estimate the high-dimensional covariance matrix for a given network structure. Using prior information contained in the network relationships, we model the covariance as a polynomial function of the symmetric adjacency matrix. Accordingly, the problem of estimating a high-dimensional covariance matrix is converted to one of estimating low dimensional coefficients of the polynomial regression function, which we can accomplish using ordinary least squares or maximum likelihood. The resulting covariance matrix estimator based on the maximum likelihood approach is guaranteed to be positive definite even in finite samples. Under mild conditions, we obtain the theoretical properties of the resulting estimators. A Bayesian information criterion is also developed to select the order of the polynomial function. Simulation studies and empirical examples illustrate the usefulness of the proposed methods.  相似文献   

17.
In this paper, we study strong uniform consistency of a weighted average of artificial data points. This is especially useful when information is incomplete (censored data, missing data …). In this case, reconstruction of the information is often achieved nonparametrically by using a local preservation of mean criterion for which the corresponding mean is estimated by a weighted average of new data points. The present approach enlarges the possible scope for applications beyond just the incomplete data context and can also be useful to treat the estimation of the conditional mean of specific functions of complete data points. As a consequence, we establish the strong uniform consistency of the Nadaraya–Watson [Nadaraya, E.A., 1964. On estimating regression. Theory Probab. Appl. 9, 141–142; Watson, G.S., 1964. Smooth regression analysis. Sankhyā Ser. A 26, 359–372] estimator for general transformations of the data points. This result generalizes the one of Härdle et al. [Strong uniform consistency rates for estimators of conditional functionals. Ann. Statist. 16, 1428–1449]. In addition, the strong uniform consistency of a modulus of continuity will be obtained for this estimator. Applications of those two results are detailed for some popular estimators.  相似文献   

18.
In this paper, we obtain a law of iterated logarithm, a Chung-type law of iterated logarithm, and a moderate deviation result of the maximum likelihood estimator (MLE) for the unknown regression parameter vector in a proportional hazards model with incomplete information.  相似文献   

19.
It is well-known in the literature on multicollinearity that one of the major consequences of multicollinearity on the ordinary least squares estimator is that the estimator produces large sampling variances, which in turn might inappropriately lead to exclusion of otherwise significant coefficients from the model. To circumvent this problem, two accepted estimation procedures which are often suggested are the restricted least squares method and the ridge regression method. While the former leads to a reduction in the sampling variance of the estimator, the later ensures a smaller mean square error value for the estimator. In this paper we have proposed a new estimator which is based on a criterion that combines the ideas underlying these two estimators. The standard properties of this new estimator have been studied in the paper. It has also been shown that this estimator is superior to both the restricted least squares as well as the ordinary ridge regression estimators by the criterion of mean sauare error of the estimator of the regression coefficients when the restrictions are indeed correct. The conditions for superiority of this estimator over the other two have also been derived for the situation when the restrictions are not correct.  相似文献   

20.
In this note the problem of nonparametric regression function estimation in a random design regression model with Gaussian errors is considered from the Bayesian perspective. It is assumed that the regression function belongs to a class of functions with a known degree of smoothness. A prior distribution on the given class can be induced by a prior on the coefficients in a series expansion of the regression function through an orthonormal system. The rate of convergence of the resulting posterior distribution is employed to provide a measure of the accuracy of the Bayesian estimation procedure defined by the posterior expected regression function. We show that the Bayes’ estimator achieves the optimal minimax rate of convergence under mean integrated squared error over the involved class of regression functions, thus being comparable to other popular frequentist regression estimators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号