首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When modeling correlated binary data in the presence of informative cluster sizes, generalized estimating equations with either resampling or inverse-weighting, are often used to correct for estimation bias. However, existing methods for the clustered longitudinal setting assume constant cluster sizes over time. We present a subject-weighted generalized estimating equations scheme that provides valid parameter estimation for the clustered longitudinal setting while allowing cluster sizes to change over time. We compare, via simulation, the performance of existing methods to our subject-weighted approach. The subject-weighted approach was the only method that showed negligible bias, with excellent coverage, for all model parameters.  相似文献   

2.
In this paper, a simulation study is conducted to systematically investigate the impact of dichotomizing longitudinal continuous outcome variables under various types of missing data mechanisms. Generalized linear models (GLM) with standard generalized estimating equations (GEE) are widely used for longitudinal outcome analysis, but these semi‐parametric approaches are only valid under missing data completely at random (MCAR). Alternatively, weighted GEE (WGEE) and multiple imputation GEE (MI‐GEE) were developed to ensure validity under missing at random (MAR). Using a simulation study, the performance of standard GEE, WGEE and MI‐GEE on incomplete longitudinal dichotomized outcome analysis is evaluated. For comparisons, likelihood‐based linear mixed effects models (LMM) are used for incomplete longitudinal original continuous outcome analysis. Focusing on dichotomized outcome analysis, MI‐GEE with original continuous missing data imputation procedure provides well controlled test sizes and more stable power estimates compared with any other GEE‐based approaches. It is also shown that dichotomizing longitudinal continuous outcome will result in substantial loss of power compared with LMM. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
We propose a new weighting (WT) method to handle missing categorical outcomes in longitudinal data analysis using generalized estimating equations (GEE). The proposed WT provides a valid GEE estimator when the data are missing at random (MAR), and has more stable weights and shows advantage in efficiency compared to the inverse probability weighing method in the presence of small observation probabilities. The WT estimator is similar to the stabilized weighting (SWT) estimator under mild conditions, but it is more stable and efficient than SWT when the associations of the outcome with the observation probabilities and the covariate are strong.  相似文献   

4.
Patient dropout is a common problem in studies that collect repeated binary measurements. Generalized estimating equations (GEE) are often used to analyze such data. The dropout mechanism may be plausibly missing at random (MAR), i.e. unrelated to future measurements given covariates and past measurements. In this case, various authors have recommended weighted GEE with weights based on an assumed dropout model, or an imputation approach, or a doubly robust approach based on weighting and imputation. These approaches provide asymptotically unbiased inference, provided the dropout or imputation model (as appropriate) is correctly specified. Other authors have suggested that, provided the working correlation structure is correctly specified, GEE using an improved estimator of the correlation parameters (‘modified GEE’) show minimal bias. These modified GEE have not been thoroughly examined. In this paper, we study the asymptotic bias under MAR dropout of these modified GEE, the standard GEE, and also GEE using the true correlation. We demonstrate that all three methods are biased in general. The modified GEE may be preferred to the standard GEE and are subject to only minimal bias in many MAR scenarios but in others are substantially biased. Hence, we recommend the modified GEE be used with caution.  相似文献   

5.
Although Fan showed that the mixed-effects model for repeated measures (MMRM) is appropriate to analyze complete longitudinal binary data in terms of the rate difference, they focused on using the generalized estimating equations (GEE) to make statistical inference. The current article emphasizes validity of the MMRM when the normal-distribution-based pseudo likelihood approach is used to make inference for complete longitudinal binary data. For incomplete longitudinal binary data with missing at random missing mechanism, however, the MMRM, using either the GEE or the normal-distribution-based pseudo likelihood inferential procedure, gives biased results in general and should not be used for analysis.  相似文献   

6.
There are many methods for analyzing longitudinal ordinal response data with random dropout. These include maximum likelihood (ML), weighted estimating equations (WEEs), and multiple imputations (MI). In this article, using a Markov model where the effect of previous response on the current response is investigated as an ordinal variable, the likelihood is partitioned to simplify the use of existing software. Simulated data, generated to present a three-period longitudinal study with random dropout, are used to compare performance of ML, WEE, and MI methods in terms of standardized bias and coverage probabilities. These estimation methods are applied to a real medical data set.  相似文献   

7.
Two classes of methods properly account for clustering of data: design-based methods and model-based methods. Estimates from both methods have been shown to be approximately equal with large samples. However, both classes are known to produce biased standard error estimates with small samples. This paper compares the bias of standard errors and statistical power of marginal effects for generalized estimating equations (a design-based method) and generalized/linear mixed effects models (model-based methods) with small sample sizes via a simulation study. Provided that the distributional assumptions are met, model-based methods produced the least-biased standard error estimates and greater relative statistical power.  相似文献   

8.
We develop local influence diagnostics to detect influential subjects when generalized linear mixed models are fitted to incomplete longitudinal overdispersed count data. The focus is on the influence stemming from the dropout model specification. In particular, the effect of small perturbations around an MAR specification are examined. The method is applied to data from a longitudinal clinical trial in epileptic patients. The effect on models allowing for overdispersion is contrasted with that on models that do not.  相似文献   

9.
Clustered binary responses are often found in ecological studies. Data analysis may include modeling the marginal probability response. However, when the association is the main scientific focus, modeling the correlation structure between pairs of responses is the key part of the analysis. Second-order generalized estimating equations (GEE) are established in the literature. Some of them are more efficient in computational terms, especially facing large clusters. Alternating logistic regression (ALR) and orthogonalized residual (ORTH) GEE methods are presented and compared in this paper. Simulation results show a slightly superiority of ALR over ORTH. Marginal probabilities and odds ratios are also estimated and compared in a real ecological study involving a three-level hierarchical clustering. ALR and ORTH models are useful for modeling complex association structure with large cluster sizes.  相似文献   

10.
In the longitudinal studies with binary response, it is often of interest to estimate the percentage of positive responses at each time point and the percentage of having at least one positive response by each time point. When missing data exist, the conventional method based on observed percentages could result in erroneous estimates. This study demonstrates two methods of using expectation-maximization (EM) and data augmentation (DA) algorithms in the estimation of the marginal and cumulative probabilities for incomplete longitudinal binary response data. Both methods provide unbiased estimates when the missingness mechanism is missing at random (MAR) assumption. Sensitivity analyses have been performed for cases when the MAR assumption is in question.  相似文献   

11.
Non‐likelihood‐based methods for repeated measures analysis of binary data in clinical trials can result in biased estimates of treatment effects and associated standard errors when the dropout process is not completely at random. We tested the utility of a multiple imputation approach in reducing these biases. Simulations were used to compare performance of multiple imputation with generalized estimating equations and restricted pseudo‐likelihood in five representative clinical trial profiles for estimating (a) overall treatment effects and (b) treatment differences at the last scheduled visit. In clinical trials with moderate to high (40–60%) dropout rates with dropouts missing at random, multiple imputation led to less biased and more precise estimates of treatment differences for binary outcomes based on underlying continuous scores. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
A popular choice when analyzing ordinal data is to consider the cumulative proportional odds model to relate the marginal probabilities of the ordinal outcome to a set of covariates. However, application of this model relies on the condition of identical cumulative odds ratios across the cut-offs of the ordinal outcome; the well-known proportional odds assumption. This paper focuses on the assessment of this assumption while accounting for repeated and missing data. In this respect, we develop a statistical method built on multiple imputation (MI) based on generalized estimating equations that allows to test the proportionality assumption under the missing at random setting. The performance of the proposed method is evaluated for two MI algorithms for incomplete longitudinal ordinal data. The impact of both MI methods is compared with respect to the type I error rate and the power for situations covering various numbers of categories of the ordinal outcome, sample sizes, rates of missingness, well-balanced and skewed data. The comparison of both MI methods with the complete-case analysis is also provided. We illustrate the use of the proposed methods on a quality of life data from a cancer clinical trial.  相似文献   

13.
The last observation carried forward (LOCF) approach is commonly utilized to handle missing values in the primary analysis of clinical trials. However, recent evidence suggests that likelihood‐based analyses developed under the missing at random (MAR) framework are sensible alternatives. The objective of this study was to assess the Type I error rates from a likelihood‐based MAR approach – mixed‐model repeated measures (MMRM) – compared with LOCF when estimating treatment contrasts for mean change from baseline to endpoint (Δ). Data emulating neuropsychiatric clinical trials were simulated in a 4 × 4 factorial arrangement of scenarios, using four patterns of mean changes over time and four strategies for deleting data to generate subject dropout via an MAR mechanism. In data with no dropout, estimates of Δ and SEΔ from MMRM and LOCF were identical. In data with dropout, the Type I error rates (averaged across all scenarios) for MMRM and LOCF were 5.49% and 16.76%, respectively. In 11 of the 16 scenarios, the Type I error rate from MMRM was at least 1.00% closer to the expected rate of 5.00% than the corresponding rate from LOCF. In no scenario did LOCF yield a Type I error rate that was at least 1.00% closer to the expected rate than the corresponding rate from MMRM. The average estimate of SEΔ from MMRM was greater in data with dropout than in complete data, whereas the average estimate of SEΔ from LOCF was smaller in data with dropout than in complete data, suggesting that standard errors from MMRM better reflected the uncertainty in the data. The results from this investigation support those from previous studies, which found that MMRM provided reasonable control of Type I error even in the presence of MNAR missingness. No universally best approach to analysis of longitudinal data exists. However, likelihood‐based MAR approaches have been shown to perform well in a variety of situations and are a sensible alternative to the LOCF approach. MNAR methods can be used within a sensitivity analysis framework to test the potential presence and impact of MNAR data, thereby assessing robustness of results from an MAR method. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
The 2 × 2 crossover trial uses subjects as their own control to reduce the intersubject variability in the treatment comparison, and typically requires fewer subjects than a parallel design. The generalized estimating equations (GEE) methodology has been commonly used to analyze incomplete discrete outcomes from crossover trials. We propose a unified approach to the power and sample size determination for the Wald Z-test and t-test from GEE analysis of paired binary, ordinal and count outcomes in crossover trials. The proposed method allows misspecification of the variance and correlation of the outcomes, missing outcomes, and adjustment for the period effect. We demonstrate that misspecification of the working variance and correlation functions leads to no or minimal efficiency loss in GEE analysis of paired outcomes. In general, GEE requires the assumption of missing completely at random. For bivariate binary outcomes, we show by simulation that the GEE estimate is asymptotically unbiased or only minimally biased, and the proposed sample size method is suitable under missing at random (MAR) if the working correlation is correctly specified. The performance of the proposed method is illustrated with several numerical examples. Adaption of the method to other paired outcomes is discussed.  相似文献   

15.
Summary.  We present a multivariate logistic regression model for the joint analysis of longitudinal multiple-source binary data. Longitudinal multiple-source binary data arise when repeated binary measurements are obtained from two or more sources, with each source providing a measure of the same underlying variable. Since the number of responses on each subject is relatively large, the empirical variance estimator performs poorly and cannot be relied on in this setting. Two methods for obtaining a parsimonious within-subject association structure are considered. An additional complication arises with estimation, since maximum likelihood estimation may not be feasible without making unrealistically strong assumptions about third- and higher order moments. To circumvent this, we propose the use of a generalized estimating equations approach. Finally, we present an analysis of multiple-informant data obtained longitudinally from a psychiatric interventional trial that motivated the model developed in the paper.  相似文献   

16.
In this study, it was aimed to determine accuracy of generalized estimating equations versus logistic regressions on different correlation levels and sample sizes. For this aim, two methods were compared with different sample sizes 10, 25, 50 and 100 and correlation levels 0.0, 0.3, 0.5 and 0.8. Result of this study showed that using generalized estimating equations could be preferred versus logistic regression when the sample size is over than 25 and correlation level is higher than 0.3 on data taken from studies with repeated measurements, but logistic regression could be better when the autocorrelations do not exist.  相似文献   

17.
Longitudinal categorical data are commonly applied in a variety of fields and are frequently analyzed by generalized estimating equation (GEE) method. Prior to making further inference based on the GEE model, the assessment of model fit is crucial. Graphical techniques have long been in widespread use for assessing the model adequacy. We develop alternative graphical approaches utilizing plots of marginal model-checking condition and local mean deviance to assess the GEE model with logit link for longitudinal binary responses. The applications of the proposed procedures are illustrated through two longitudinal binary datasets.  相似文献   

18.
Power analysis for cluster randomized control trials is difficult to perform when a binary response is modeled using the generalized linear mixed-effects model (GLMM). Although methods for clustered binary responses exist such as the generalized estimating equations, they do not apply to the context of GLMM. Also, because popular statistical packages such as R and SAS do not provide correct estimates of parameters for the GLMM for binary responses, Monte Carlo simulation, a popular ad-hoc method for estimating power when the power function is too complex to evaluate analytically or numerically, fails to provide correct power estimates within the current context as well. In this paper, a new approach is developed to estimate power for cluster randomized control trials when a binary response is modeled by the GLMM. The approach is easy to implement and seems to work quite well, as assessed by simulation studies. The approach is illustrated with a real intervention study to reduce suicide reattempt rates among US Veterans.  相似文献   

19.
Proportion differences are often used to estimate and test treatment effects in clinical trials with binary outcomes. In order to adjust for other covariates or intra-subject correlation among repeated measures, logistic regression or longitudinal data analysis models such as generalized estimating equation or generalized linear mixed models may be used for the analyses. However, these analysis models are often based on the logit link which results in parameter estimates and comparisons in the log-odds ratio scale rather than in the proportion difference scale. A two-step method is proposed in the literature to approximate the calculation of confidence intervals for the proportion difference using a concept of effective sample sizes. However, the performance of this two-step method has not been investigated in their paper. On this note, we examine the properties of the two-step method and propose an adjustment to the effective sample size formula based on Bayesian information theory. Simulations are conducted to evaluate the performance and to show that the modified effective sample size improves the coverage property of the confidence intervals.  相似文献   

20.
Misclassifications in binary responses have long been a common problem in medical and health surveys. One way to handle misclassifications in clustered or longitudinal data is to incorporate the misclassification model through the generalized estimating equation (GEE) approach. However, existing methods are developed under a non-survey setting and cannot be used directly for complex survey data. We propose a pseudo-GEE method for the analysis of binary survey responses with misclassifications. We focus on cluster sampling and develop analysis strategies for analyzing binary survey responses with different forms of additional information for the misclassification process. The proposed methodology has several attractive features, including simultaneous inferences for both the response model and the association parameters. Finite sample performance of the proposed estimators is evaluated through simulation studies and an application using a real dataset from the Canadian Longitudinal Study on Aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号