首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modeling spatial overdispersion requires point process models with finite‐dimensional distributions that are overdisperse relative to the Poisson distribution. Fitting such models usually heavily relies on the properties of stationarity, ergodicity, and orderliness. In addition, although processes based on negative binomial finite‐dimensional distributions have been widely considered, they typically fail to simultaneously satisfy the three required properties for fitting. Indeed, it has been conjectured by Diggle and Milne that no negative binomial model can satisfy all three properties. In light of this, we change perspective and construct a new process based on a different overdisperse count model, namely, the generalized Waring (GW) distribution. While comparably tractable and flexible to negative binomial processes, the GW process is shown to possess all required properties and additionally span the negative binomial and Poisson processes as limiting cases. In this sense, the GW process provides an approximate resolution to the conundrum highlighted by Diggle and Milne.  相似文献   

2.
Count data often display excessive number of zero outcomes than are expected in the Poisson regression model. The zero-inflated Poisson regression model has been suggested to handle zero-inflated data, whereas the zero-inflated negative binomial (ZINB) regression model has been fitted for zero-inflated data with additional overdispersion. For bivariate and zero-inflated cases, several regression models such as the bivariate zero-inflated Poisson (BZIP) and bivariate zero-inflated negative binomial (BZINB) have been considered. This paper introduces several forms of nested BZINB regression model which can be fitted to bivariate and zero-inflated count data. The mean–variance approach is used for comparing the BZIP and our forms of BZINB regression model in this study. A similar approach was also used by past researchers for defining several negative binomial and zero-inflated negative binomial regression models based on the appearance of linear and quadratic terms of the variance function. The nested BZINB regression models proposed in this study have several advantages; the likelihood ratio tests can be performed for choosing the best model, the models have flexible forms of marginal mean–variance relationship, the models can be fitted to bivariate zero-inflated count data with positive or negative correlations, and the models allow additional overdispersion of the two dependent variables.  相似文献   

3.
This paper considers the first-order integer-valued autoregressive (INAR) process with Katz family innovations. This family of INAR processes includes a broad class of INAR(1) processes with Poisson, negative binomial, and binomial innovations, respectively, featuring equi-, over-, and under-dispersion. Its probabilistic properties such as ergodicity and stationarity are investigated and the formula of the marginal mean and variance is provided. Further, a statistical process control procedure based on the cumulative sum control chart is considered to monitor autocorrelated count processes. A simulation and real data analysis are conducted for illustration.  相似文献   

4.
In survey sampling and in stereology, it is often desirable to estimate the ratio of means θ= E(Y)/E(X) from bivariate count data (X, Y) with unknown joint distribution. We review methods that are available for this problem, with particular reference to stereological applications. We also develop new methods based on explicit statistical models for the data, and associated model diagnostics. The methods are tested on a stereological dataset. For point‐count data, binomial regression and bivariate binomial models are generally adequate. Intercept‐count data are often overdispersed relative to Poisson regression models, but adequately fitted by negative binomial regression.  相似文献   

5.
Summary.  A useful discrete distribution (the Conway–Maxwell–Poisson distribution) is revived and its statistical and probabilistic properties are introduced and explored. This distribution is a two-parameter extension of the Poisson distribution that generalizes some well-known discrete distributions (Poisson, Bernoulli and geometric). It also leads to the generalization of distributions derived from these discrete distributions (i.e. the binomial and negative binomial distributions). We describe three methods for estimating the parameters of the Conway–Maxwell–Poisson distribution. The first is a fast simple weighted least squares method, which leads to estimates that are sufficiently accurate for practical purposes. The second method, using maximum likelihood, can be used to refine the initial estimates. This method requires iterations and is more computationally intensive. The third estimation method is Bayesian. Using the conjugate prior, the posterior density of the parameters of the Conway–Maxwell–Poisson distribution is easily computed. It is a flexible distribution that can account for overdispersion or underdispersion that is commonly encountered in count data. We also explore two sets of real world data demonstrating the flexibility and elegance of the Conway–Maxwell–Poisson distribution in fitting count data which do not seem to follow the Poisson distribution.  相似文献   

6.
Count responses with structural zeros are very common in medical and psychosocial research, especially in alcohol and HIV research, and the zero-inflated Poisson (ZIP) and zero-inflated negative binomial models are widely used for modeling such outcomes. However, as alcohol drinking outcomes such as days of drinkings are counts within a given period, their distributions are bounded above by an upper limit (total days in the period) and thus inherently follow a binomial or zero-inflated binomial (ZIB) distribution, rather than a Poisson or ZIP distribution, in the presence of structural zeros. In this paper, we develop a new semiparametric approach for modeling ZIB-like count responses for cross-sectional as well as longitudinal data. We illustrate this approach with both simulated and real study data.  相似文献   

7.
Clinical studies in overactive bladder have traditionally used analysis of covariance or nonparametric methods to analyse the number of incontinence episodes and other count data. It is known that if the underlying distributional assumptions of a particular parametric method do not hold, an alternative parametric method may be more efficient than a nonparametric one, which makes no assumptions regarding the underlying distribution of the data. Therefore, there are advantages in using methods based on the Poisson distribution or extensions of that method, which incorporate specific features that provide a modelling framework for count data. One challenge with count data is overdispersion, but methods are available that can account for this through the introduction of random effect terms in the modelling, and it is this modelling framework that leads to the negative binomial distribution. These models can also provide clinicians with a clearer and more appropriate interpretation of treatment effects in terms of rate ratios. In this paper, the previously used parametric and non‐parametric approaches are contrasted with those based on Poisson regression and various extensions in trials evaluating solifenacin and mirabegron in patients with overactive bladder. In these applications, negative binomial models are seen to fit the data well. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, estimation of the parameters of the zero-inflated count regression models and computations of posterior model probabilities of the log-linear models defined for each zero-inflated count regression models are investigated from the Bayesian point of view. In addition, determinations of the most suitable log-linear and regression models are investigated. It is known that zero-inflated count regression models cover zero-inflated Poisson, zero-inflated negative binomial, and zero-inflated generalized Poisson regression models. The classical approach has some problematic points but the Bayesian approach does not have similar flaws. This work points out the reasons for using the Bayesian approach. It also lists advantages and disadvantages of the classical and Bayesian approaches. As an application, a zoological data set, including structural and sampling zeros, is used in the presence of extra zeros. In this work, it is observed that fitting a zero-inflated negative binomial regression model creates no problems at all, even though it is known that fitting a zero-inflated negative binomial regression model is the most problematic procedure in the classical approach. Additionally, it is found that the best fitting model is the log-linear model under the negative binomial regression model, which does not include three-way interactions of factors.  相似文献   

9.
In this article, we present a procedure for approximate negative binomial tolerance intervals. We utilize an approach that has been well-studied to approximate tolerance intervals for the binomial and Poisson settings, which is based on the confidence interval for the parameter in the respective distribution. A simulation study is performed to assess the coverage probabilities and expected widths of the tolerance intervals. The simulation study also compares eight different confidence interval approaches for the negative binomial proportions. We recommend using those in practice that perform the best based on our simulation results. The method is also illustrated using two real data examples.  相似文献   

10.
A random effects model for analyzing mixed longitudinal normal and count outcomes with and without the possibility of non ignorable missing outcomes is presented. The count response is inflated in two points (k and l) and the (k, l)-Hurdle power series is used as its distribution. The new distribution contains, as special submodels, several important distributions which are discussed, such as (k, l)-Hurdle Poisson and (k, l)-Hurdle negative binomial and (k, l)-Hurdle binomial distributions among others. Random effects are used to take into account the correlation between longitudinal outcomes and inflation parameters. A full likelihood-based approach is used to yield maximum likelihood estimates of the model parameters. A simulation study is performed in which for count outcome (k, l)-Hurdle Poisson, (k, l)-Hurdle negative binomial and (k, l)-Hurdle binomial distributions are considered. To illustrate the application of such modelling the longitudinal data of body mass index and the number of joint damage are analyzed.  相似文献   

11.
The classical Shewhart c-chart and p-chart which are constructed based on the Poisson and binomial distributions are inappropriate in monitoring zero-inflated counts. They tend to underestimate the dispersion of zero-inflated counts and subsequently lead to higher false alarm rate in detecting out-of-control signals. Another drawback of these charts is that their 3-sigma control limits, evaluated based on the asymptotic normality assumption of the attribute counts, have a systematic negative bias in their coverage probability. We recommend that the zero-inflated models which account for the excess number of zeros should first be fitted to the zero-inflated Poisson and binomial counts. The Poisson parameter λ estimated from a zero-inflated Poisson model is then used to construct a one-sided c-chart with its upper control limit constructed based on the Jeffreys prior interval that provides good coverage probability for λ. Similarly, the binomial parameter p estimated from a zero-inflated binomial model is used to construct a one-sided np-chart with its upper control limit constructed based on the Jeffreys prior interval or Blyth–Still interval of the binomial proportion p. A simple two-of-two control rule is also recommended to improve further on the performance of these two proposed charts.  相似文献   

12.
In recent years, there has been considerable interest in regression models based on zero-inflated distributions. These models are commonly encountered in many disciplines, such as medicine, public health, and environmental sciences, among others. The zero-inflated Poisson (ZIP) model has been typically considered for these types of problems. However, the ZIP model can fail if the non-zero counts are overdispersed in relation to the Poisson distribution, hence the zero-inflated negative binomial (ZINB) model may be more appropriate. In this paper, we present a Bayesian approach for fitting the ZINB regression model. This model considers that an observed zero may come from a point mass distribution at zero or from the negative binomial model. The likelihood function is utilized to compute not only some Bayesian model selection measures, but also to develop Bayesian case-deletion influence diagnostics based on q-divergence measures. The approach can be easily implemented using standard Bayesian software, such as WinBUGS. The performance of the proposed method is evaluated with a simulation study. Further, a real data set is analyzed, where we show that ZINB regression models seems to fit the data better than the Poisson counterpart.  相似文献   

13.
Statistical process control of multi-attribute count data has received much attention with modern data-acquisition equipment and online computers. The multivariate Poisson distribution is often used to monitor multivariate attributes count data. However, little work has been done so far on under- or over-dispersed multivariate count data, which is common in many industrial processes, with positive or negative correlation. In this study, a Shewhart-type multivariate control chart is constructed to monitor such kind of data, namely the multivariate COM-Poisson (MCP) chart, based on the MCP distribution. The performance of the MCP chart is evaluated by the average run length in simulation. The proposed chart generalizes some existing multivariate attribute charts as its special cases. A real-life bivariate process and a simulated trivariate Poisson process are used to illustrate the application of the MCP chart.  相似文献   

14.
The objective of this study is providing a comparative assessment for researchers to deal with the challenges of analyzing count data and examining the factors associated with daily cigarette consumption among the young people in Turkey. We fitted Poisson (P), negative binomial (NB), zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), Poisson hurdle (PH) and negative binomial hurdle (NBH) regressions to cigarette consumption count data by using the 2014 Turkey Health Survey. Our results showed that the ZINB and NBH models should be preferred. We also found that, gender, employment and tobacco use at home are more effective factors for smokers and nonsmokers in the 15–24 age group in Turkey.  相似文献   

15.
Count data analysis techniques have been developed in biological and medical research areas. In particular, zero-inflated versions of parametric count distributions have been used to model excessive zeros that are often present in these assays. The most common count distributions for analyzing such data are Poisson and negative binomial. However, a Poisson distribution can only handle equidispersed data and a negative binomial distribution can only cope with overdispersion. However, a Conway–Maxwell–Poisson (CMP) distribution [4] can handle a wide range of dispersion. We show, with an illustrative data set on next-generation sequencing of maize hybrids, that both underdispersion and overdispersion can be present in genomic data. Furthermore, the maize data set consists of clustered observations and, therefore, we develop inference procedures for a zero-inflated CMP regression that incorporates a cluster-specific random effect term. Unlike the Gaussian models, the underlying likelihood is computationally challenging. We use a numerical approximation via a Gaussian quadrature to circumvent this issue. A test for checking zero-inflation has also been developed in our setting. Finite sample properties of our estimators and test have been investigated by extensive simulations. Finally, the statistical methodology has been applied to analyze the maize data mentioned before.  相似文献   

16.
We consider the problem of assessing prediction for count time series based on either the Poisson distribution or the negative binomial distribution. By a suitable parametrization we employ both distributions with the same mean. We regress the mean on its past values and the values of the response and after obtaining consistent estimators of the regression parameters, regardless of the response distribution, we employ different criteria to study the prediction problem. We show by simulation and data examples that scoring rules and diagnostic graphs that have been proposed for independent but not identically distributed data can be adapted in the setting of count dependent data.  相似文献   

17.
AStA Advances in Statistical Analysis - Standard Poisson and negative binomial truncated regression models for count data include the regressors in the mean of the non-truncated distribution. In...  相似文献   

18.
The purpose of this paper is to develop a new linear regression model for count data, namely generalized-Poisson Lindley (GPL) linear model. The GPL linear model is performed by applying generalized linear model to GPL distribution. The model parameters are estimated by the maximum likelihood estimation. We utilize the GPL linear model to fit two real data sets and compare it with the Poisson, negative binomial (NB) and Poisson-weighted exponential (P-WE) models for count data. It is found that the GPL linear model can fit over-dispersed count data, and it shows the highest log-likelihood, the smallest AIC and BIC values. As a consequence, the linear regression model from the GPL distribution is a valuable alternative model to the Poisson, NB, and P-WE models.  相似文献   

19.
This paper discusses five methods for constructing approximate confidence intervals for the binomial parameter Θ, based on Y successes in n Bernoulli trials. In a recent paper, Chen (1990) discusses various approximate methods and suggests a new method based on a Bayes argument, which we call method I here. Methods II and III are based on the normal approximation without and with continuity correction. Method IV uses the Poisson approximation of the binomial distribution and then exploits the fact that the exact confidence limits for the parameter of the Poisson distribution can be found through the x2 distribution. The confidence limits of method IV are then provided by the Wilson-Hilferty approximation of the x2. Similarly, the exact confidence limits for the binomial parameter can be expressed through the F distribution. Method V approximates these limits through a suitable version of the Wilson-Hilferty approximation. We undertake a comparison of the five methods in respect to coverage probability and expected length. The results indicate that method V has an advantage over Chen's Bayes method as well as over the other three methods.  相似文献   

20.
This article proposes a variable selection approach for zero-inflated count data analysis based on the adaptive lasso technique. Two models including the zero-inflated Poisson and the zero-inflated negative binomial are investigated. An efficient algorithm is used to minimize the penalized log-likelihood function in an approximate manner. Both the generalized cross-validation and Bayesian information criterion procedures are employed to determine the optimal tuning parameter, and a consistent sandwich formula of standard errors for nonzero estimates is given based on local quadratic approximation. We evaluate the performance of the proposed adaptive lasso approach through extensive simulation studies, and apply it to analyze real-life data about doctor visits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号