首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clustering algorithms are used in the analysis of gene expression data to identify groups of genes with similar expression patterns. These algorithms group genes with respect to a predefined dissimilarity measure without using any prior classification of the data. Most of the clustering algorithms require the number of clusters as input, and all the objects in the dataset are usually assigned to one of the clusters. We propose a clustering algorithm that finds clusters sequentially, and allows for sporadic objects, so there are objects that are not assigned to any cluster. The proposed sequential clustering algorithm has two steps. First it finds candidates for centers of clusters. Multiple candidates are used to make the search for clusters more efficient. Secondly, it conducts a local search around the candidate centers to find the set of objects that defines a cluster. The candidate clusters are compared using a predefined score, the best cluster is removed from data, and the procedure is repeated. We investigate the performance of this algorithm using simulated data and we apply this method to analyze gene expression profiles in a study on the plasticity of the dendritic cells.  相似文献   

2.
Model-based clustering is a method that clusters data with an assumption of a statistical model structure. In this paper, we propose a novel model-based hierarchical clustering method for a finite statistical mixture model based on the Fisher distribution. The main foci of the proposed method are: (a) provide efficient solution to estimate the parameters of a Fisher mixture model (FMM); (b) generate a hierarchy of FMMs and (c) select the optimal model. To this aim, we develop a Bregman soft clustering method for FMM. Our model estimation strategy exploits Bregman divergence and hierarchical agglomerative clustering. Whereas, our model selection strategy comprises a parsimony-based approach and an evaluation graph-based approach. We empirically validate our proposed method by applying it on simulated data. Next, we apply the method on real data to perform depth image analysis. We demonstrate that the proposed clustering method can be used as a potential tool for unsupervised depth image analysis.  相似文献   

3.

We propose two nonparametric Bayesian methods to cluster big data and apply them to cluster genes by patterns of gene–gene interaction. Both approaches define model-based clustering with nonparametric Bayesian priors and include an implementation that remains feasible for big data. The first method is based on a predictive recursion which requires a single cycle (or few cycles) of simple deterministic calculations for each observation under study. The second scheme is an exact method that divides the data into smaller subsamples and involves local partitions that can be determined in parallel. In a second step, the method requires only the sufficient statistics of each of these local clusters to derive global clusters. Under simulated and benchmark data sets the proposed methods compare favorably with other clustering algorithms, including k-means, DP-means, DBSCAN, SUGS, streaming variational Bayes and an EM algorithm. We apply the proposed approaches to cluster a large data set of gene–gene interactions extracted from the online search tool “Zodiac.”

  相似文献   

4.
Block clustering with collapsed latent block models   总被引:1,自引:0,他引:1  
We introduce a Bayesian extension of the latent block model for model-based block clustering of data matrices. Our approach considers a block model where block parameters may be integrated out. The result is a posterior defined over the number of clusters in rows and columns and cluster memberships. The number of row and column clusters need not be known in advance as these are sampled along with cluster memberhips using Markov chain Monte Carlo. This differs from existing work on latent block models, where the number of clusters is assumed known or is chosen using some information criteria. We analyze both simulated and real data to validate the technique.  相似文献   

5.
Cluster analysis is an important technique of explorative data mining. It refers to a collection of statistical methods for learning the structure of data by solely exploring pairwise distances or similarities. Often meaningful structures are not detectable in these high-dimensional feature spaces. Relevant features can be obfuscated by noise from irrelevant measurements. These observations led to the design of subspace clustering algorithms, which can identify clusters that originate from different subsets of features. Hunting for clusters in arbitrary subspaces is intractable due to the infinite search space spanned by all feature combinations. In this work, we present a subspace clustering algorithm that can be applied for exhaustively screening all feature combinations of small- or medium-sized datasets (approximately 30 features). Based on a robustness analysis via subsampling we are able to identify a set of stable candidate subspace cluster solutions.  相似文献   

6.
We propose a method for specifying the distribution of random effects included in a model for cluster data. The class of models we consider includes mixed models and frailty models whose random effects and explanatory variables are constant within clusters. The method is based on cluster residuals obtained by assuming that the random effects are equal between clusters. We exhibit an asymptotic relationship between the cluster residuals and variations of the random effects as the number of observations increases and the variance of the random effects decreases. The asymptotic relationship is used to specify the random-effects distribution. The method is applied to a frailty model and a model used to describe the spread of plant diseases.  相似文献   

7.
We study the problem of merging homogeneous groups of pre-classified observations from a robust perspective motivated by the anti-fraud analysis of international trade data. This problem may be seen as a clustering task which exploits preliminary information on the potential clusters, available in the form of group-wise linear regressions. Robustness is then needed because of the sensitivity of likelihood-based regression methods to deviations from the postulated model. Through simulations run under different contamination scenarios, we assess the impact of outliers both on group-wise regression fitting and on the quality of the final clusters. We also compare alternative robust methods that can be adopted to detect the outliers and thus to clean the data. One major conclusion of our study is that the use of robust procedures for preliminary outlier detection is generally recommended, except perhaps when contamination is weak and the identification of cluster labels is more important than the estimation of group-specific population parameters. We also apply the methodology to find homogeneous groups of transactions in one empirical example that illustrates our motivating anti-fraud framework.  相似文献   

8.
Although Hartigan (1975) had already put forward the idea of connecting identification of subpopulations with regions with high density of the underlying probability distribution, the actual development of methods for cluster analysis has largely shifted towards other directions, for computational convenience. Current computational resources allow us to reconsider this formulation and to develop clustering techniques directly in order to identify local modes of the density. Given a set of observations, a nonparametric estimate of the underlying density function is constructed, and subsets of points with high density are formed through suitable manipulation of the associated Delaunay triangulation. The method is illustrated with some numerical examples.  相似文献   

9.
In this work, we modify finite mixtures of factor analysers to provide a method for simultaneous clustering of subjects and multivariate discrete outcomes. The joint clustering is performed through a suitable reparameterization of the outcome (column)-specific parameters. We develop an expectation–maximization-type algorithm for maximum likelihood parameter estimation where the maximization step is divided into orthogonal sub-blocks that refer to row and column-specific parameters, respectively. Model performance is evaluated via a simulation study with varying sample size, number of outcomes and row/column-specific clustering (partitions). We compare the performance of our model with the performance of standard model-based biclustering approaches. The proposed method is also demonstrated on a benchmark data set where a multivariate binary response is considered.  相似文献   

10.
This paper describes an application of small area estimation (SAE) techniques under area-level spatial random effect models when only area (or district or aggregated) level data are available. In particular, the SAE approach is applied to produce district-level model-based estimates of crop yield for paddy in the state of Uttar Pradesh in India using the data on crop-cutting experiments supervised under the Improvement of Crop Statistics scheme and the secondary data from the Population Census. The diagnostic measures are illustrated to examine the model assumptions as well as reliability and validity of the generated model-based small area estimates. The results show a considerable gain in precision in model-based estimates produced applying SAE. Furthermore, the model-based estimates obtained by exploiting spatial information are more efficient than the one obtained by ignoring this information. However, both of these model-based estimates are more efficient than the direct survey estimate. In many districts, there is no survey data and therefore it is not possible to produce direct survey estimates for these districts. The model-based estimates generated using SAE are still reliable for such districts. These estimates produced by using SAE will provide invaluable information to policy-analysts and decision-makers.  相似文献   

11.
A novel family of mixture models is introduced based on modified t-factor analyzers. Modified factor analyzers were recently introduced within the Gaussian context and our work presents a more flexible and robust alternative. We introduce a family of mixtures of modified t-factor analyzers that uses this generalized version of the factor analysis covariance structure. We apply this family within three paradigms: model-based clustering; model-based classification; and model-based discriminant analysis. In addition, we apply the recently published Gaussian analogue to this family under the model-based classification and discriminant analysis paradigms for the first time. Parameter estimation is carried out within the alternating expectation-conditional maximization framework and the Bayesian information criterion is used for model selection. Two real data sets are used to compare our approach to other popular model-based approaches; in these comparisons, the chosen mixtures of modified t-factor analyzers model performs favourably. We conclude with a summary and suggestions for future work.  相似文献   

12.
Clustering gene expression time course data is an important problem in bioinformatics because understanding which genes behave similarly can lead to the discovery of important biological information. Statistically, the problem of clustering time course data is a special case of the more general problem of clustering longitudinal data. In this paper, a very general and flexible model-based technique is used to cluster longitudinal data. Mixtures of multivariate t-distributions are utilized, with a linear model for the mean and a modified Cholesky-decomposed covariance structure. Constraints are placed upon the covariance structure, leading to a novel family of mixture models, including parsimonious models. In addition to model-based clustering, these models are also used for model-based classification, i.e., semi-supervised clustering. Parameters, including the component degrees of freedom, are estimated using an expectation-maximization algorithm and two different approaches to model selection are considered. The models are applied to simulated data to illustrate their efficacy; this includes a comparison with their Gaussian analogues—the use of these Gaussian analogues with a linear model for the mean is novel in itself. Our family of multivariate t mixture models is then applied to two real gene expression time course data sets and the results are discussed. We conclude with a summary, suggestions for future work, and a discussion about constraining the degrees of freedom parameter.  相似文献   

13.
Model-based clustering methods for continuous data are well established and commonly used in a wide range of applications. However, model-based clustering methods for categorical data are less standard. Latent class analysis is a commonly used method for model-based clustering of binary data and/or categorical data, but due to an assumed local independence structure there may not be a correspondence between the estimated latent classes and groups in the population of interest. The mixture of latent trait analyzers model extends latent class analysis by assuming a model for the categorical response variables that depends on both a categorical latent class and a continuous latent trait variable; the discrete latent class accommodates group structure and the continuous latent trait accommodates dependence within these groups. Fitting the mixture of latent trait analyzers model is potentially difficult because the likelihood function involves an integral that cannot be evaluated analytically. We develop a variational approach for fitting the mixture of latent trait models and this provides an efficient model fitting strategy. The mixture of latent trait analyzers model is demonstrated on the analysis of data from the National Long Term Care Survey (NLTCS) and voting in the U.S. Congress. The model is shown to yield intuitive clustering results and it gives a much better fit than either latent class analysis or latent trait analysis alone.  相似文献   

14.
Cluster analysis is one of the most widely used method in statistical analyses, in which homogeneous subgroups are identified in a heterogeneous population. Due to the existence of the continuous and discrete mixed data in many applications, so far, some ordinary clustering methods such as, hierarchical methods, k-means and model-based methods have been extended for analysis of mixed data. However, in the available model-based clustering methods, by increasing the number of continuous variables, the number of parameters increases and identifying as well as fitting an appropriate model may be difficult. In this paper, to reduce the number of the parameters, for the model-based clustering mixed data of continuous (normal) and nominal data, a set of parsimonious models is introduced. Models in this set are extended, using the general location model approach, for modeling distribution of mixed variables and applying factor analyzer structure for covariance matrices. The ECM algorithm is used for estimating the parameters of these models. In order to show the performance of the proposed models for clustering, results from some simulation studies and analyzing two real data sets are presented.  相似文献   

15.
Model-based clustering for social networks   总被引:5,自引:0,他引:5  
Summary.  Network models are widely used to represent relations between interacting units or actors. Network data often exhibit transitivity, meaning that two actors that have ties to a third actor are more likely to be tied than actors that do not, homophily by attributes of the actors or dyads, and clustering. Interest often focuses on finding clusters of actors or ties, and the number of groups in the data is typically unknown. We propose a new model, the latent position cluster model , under which the probability of a tie between two actors depends on the distance between them in an unobserved Euclidean 'social space', and the actors' locations in the latent social space arise from a mixture of distributions, each corresponding to a cluster. We propose two estimation methods: a two-stage maximum likelihood method and a fully Bayesian method that uses Markov chain Monte Carlo sampling. The former is quicker and simpler, but the latter performs better. We also propose a Bayesian way of determining the number of clusters that are present by using approximate conditional Bayes factors. Our model represents transitivity, homophily by attributes and clustering simultaneously and does not require the number of clusters to be known. The model makes it easy to simulate realistic networks with clustering, which are potentially useful as inputs to models of more complex systems of which the network is part, such as epidemic models of infectious disease. We apply the model to two networks of social relations. A free software package in the R statistical language, latentnet, is available to analyse data by using the model.  相似文献   

16.
We design a probability distribution for ordinal data by modeling the process generating data, which is assumed to rely only on order comparisons between categories. Contrariwise, most competitors often either forget the order information or add a non-existent distance information. The data generating process is assumed, from optimality arguments, to be a stochastic binary search algorithm in a sorted table. The resulting distribution is natively governed by two meaningful parameters (position and precision) and has very appealing properties: decrease around the mode, shape tuning from uniformity to a Dirac, identifiability. Moreover, it is easily estimated by an EM algorithm since the path in the stochastic binary search algorithm can be considered as missing values. Using then the classical latent class assumption, the previous univariate ordinal model is straightforwardly extended to model-based clustering for multivariate ordinal data. Parameters of this mixture model are estimated by an AECM algorithm. Both simulated and real data sets illustrate the great potential of this model by its ability to parsimoniously identify particularly relevant clusters which were unsuspected by some traditional competitors.  相似文献   

17.
Summary.  We present an approach to the construction of clusters of life course trajectories and use it to obtain ideal types of trajectories that can be interpreted and analysed meaningfully. We represent life courses as sequences on a monthly timescale and apply optimal matching analysis to compute dissimilarities between individuals. We introduce a new divisive clustering algorithm which has features that are in common with both Ward's agglomerative algorithm and classification and regression trees. We analyse British Household Panel Survey data on the employment and family trajectories of women. Our method produces clusters of sequences for which it is straightforward to determine who belongs to each cluster, making it easier to interpret the relative importance of life course factors in distinguishing subgroups of the population. Moreover our method gives guidance on selecting the number of clusters.  相似文献   

18.
Kernel density estimation has been used with great success with data that may be assumed to be generated from independent and identically distributed (iid) random variables. The methods and theoretical results for iid data, however, do not directly apply to data from stratified multistage samples. We present finite-sample and asymptotic properties of a modified density estimator introduced in Buskirk (Proceedings of the Survey Research Methods Section, American Statistical Association (1998), pp. 799–801) and Bellhouse and Stafford (Statist. Sin. 9 (1999) 407–424); this estimator incorporates both the sampling weights and the kernel weights. We present regularity conditions which lead the sample estimator to be consistent and asymptotically normal under various modes of inference used with sample survey data. We also introduce a superpopulation structure for model-based inference that allows the population model to reflect naturally occurring clustering. The estimator, and confidence bands derived from the sampling design, are illustrated using data from the US National Crime Victimization Survey and the US National Health and Nutrition Examination Survey.  相似文献   

19.
We develop clustering procedures for longitudinal trajectories based on a continuous-time hidden Markov model (CTHMM) and a generalized linear observation model. Specifically, in this article we carry out finite and infinite mixture model-based clustering for a CTHMM and achieve inference using Markov chain Monte Carlo (MCMC). For a finite mixture model with a prior on the number of components, we implement reversible-jump MCMC to facilitate the trans-dimensional move between models with different numbers of clusters. For a Dirichlet process mixture model, we utilize restricted Gibbs sampling split–merge proposals to improve the performance of the MCMC algorithm. We apply our proposed algorithms to simulated data as well as a real-data example, and the results demonstrate the desired performance of the new sampler.  相似文献   

20.
Model-based clustering using copulas with applications   总被引:1,自引:0,他引:1  
The majority of model-based clustering techniques is based on multivariate normal models and their variants. In this paper copulas are used for the construction of flexible families of models for clustering applications. The use of copulas in model-based clustering offers two direct advantages over current methods: (i) the appropriate choice of copulas provides the ability to obtain a range of exotic shapes for the clusters, and (ii) the explicit choice of marginal distributions for the clusters allows the modelling of multivariate data of various modes (either discrete or continuous) in a natural way. This paper introduces and studies the framework of copula-based finite mixture models for clustering applications. Estimation in the general case can be performed using standard EM, and, depending on the mode of the data, more efficient procedures are provided that can fully exploit the copula structure. The closure properties of the mixture models under marginalization are discussed, and for continuous, real-valued data parametric rotations in the sample space are introduced, with a parallel discussion on parameter identifiability depending on the choice of copulas for the components. The exposition of the methodology is accompanied and motivated by the analysis of real and artificial data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号