首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regularization methods for simultaneous variable selection and coefficient estimation have been shown to be effective in quantile regression in improving the prediction accuracy. In this article, we propose the Bayesian bridge for variable selection and coefficient estimation in quantile regression. A simple and efficient Gibbs sampling algorithm was developed for posterior inference using a scale mixture of uniform representation of the Bayesian bridge prior. This is the first work to discuss regularized quantile regression with the bridge penalty. Both simulated and real data examples show that the proposed method often outperforms quantile regression without regularization, lasso quantile regression, and Bayesian lasso quantile regression.  相似文献   

2.
A Bayesian elastic net approach is presented for variable selection and coefficient estimation in linear regression models. A simple Gibbs sampling algorithm was developed for posterior inference using a location-scale mixture representation of the Bayesian elastic net prior for the regression coefficients. The penalty parameters are chosen through an empirical method that maximizes the data marginal likelihood. Both simulated and real data examples show that the proposed method performs well in comparison to the other approaches.  相似文献   

3.
In this paper, we adopt the Bayesian approach to expectile regression employing a likelihood function that is based on an asymmetric normal distribution. We demonstrate that improper uniform priors for the unknown model parameters yield a proper joint posterior. Three simulated data sets were generated to evaluate the proposed method which show that Bayesian expectile regression performs well and has different characteristics comparing with Bayesian quantile regression. We also apply this approach into two real data analysis.  相似文献   

4.
Discrete choice models describe the choices made by decision makers among alternatives and play an important role in transportation planning, marketing research and other applications. The mixed multinomial logit (MMNL) model is a popular discrete choice model that captures heterogeneity in the preferences of decision makers through random coefficients. While Markov chain Monte Carlo methods provide the Bayesian analogue to classical procedures for estimating MMNL models, computations can be prohibitively expensive for large datasets. Approximate inference can be obtained using variational methods at a lower computational cost with competitive accuracy. In this paper, we develop variational methods for estimating MMNL models that allow random coefficients to be correlated in the posterior and can be extended easily to large-scale datasets. We explore three alternatives: (1) Laplace variational inference, (2) nonconjugate variational message passing and (3) stochastic linear regression. Their performances are compared using real and simulated data. To accelerate convergence for large datasets, we develop stochastic variational inference for MMNL models using each of the above alternatives. Stochastic variational inference allows data to be processed in minibatches by optimizing global variational parameters using stochastic gradient approximation. A novel strategy for increasing minibatch sizes adaptively within stochastic variational inference is proposed.  相似文献   

5.
This paper presents a Bayesian analysis of partially linear additive models for quantile regression. We develop a semiparametric Bayesian approach to quantile regression models using a spectral representation of the nonparametric regression functions and the Dirichlet process (DP) mixture for error distribution. We also consider Bayesian variable selection procedures for both parametric and nonparametric components in a partially linear additive model structure based on the Bayesian shrinkage priors via a stochastic search algorithm. Based on the proposed Bayesian semiparametric additive quantile regression model referred to as BSAQ, the Bayesian inference is considered for estimation and model selection. For the posterior computation, we design a simple and efficient Gibbs sampler based on a location-scale mixture of exponential and normal distributions for an asymmetric Laplace distribution, which facilitates the commonly used collapsed Gibbs sampling algorithms for the DP mixture models. Additionally, we discuss the asymptotic property of the sempiparametric quantile regression model in terms of consistency of posterior distribution. Simulation studies and real data application examples illustrate the proposed method and compare it with Bayesian quantile regression methods in the literature.  相似文献   

6.
Bayesian inference of a generalized Weibull stress‐strength model (SSM) with more than one strength component is considered. For this problem, properly assigning priors for the reliabilities is challenging due to the presence of nuisance parameters. Matching priors, which are priors matching the posterior probabilities of certain regions with their frequentist coverage probabilities, are commonly used but difficult to derive in this problem. Instead, we apply an alternative method and derive a matching prior based on a modification of the profile likelihood. Simulation studies show that this proposed prior performs well in terms of frequentist coverage and estimation even when the sample sizes are minimal. The prior is applied to two real datasets. The Canadian Journal of Statistics 41: 83–97; 2013 © 2012 Statistical Society of Canada  相似文献   

7.
A Bayesian multi-category kernel classification method is proposed. The algorithm performs the classification of the projections of the data to the principal axes of the feature space. The advantage of this approach is that the regression coefficients are identifiable and sparse, leading to large computational savings and improved classification performance. The degree of sparsity is regulated in a novel framework based on Bayesian decision theory. The Gibbs sampler is implemented to find the posterior distributions of the parameters, thus probability distributions of prediction can be obtained for new data points, which gives a more complete picture of classification. The algorithm is aimed at high dimensional data sets where the dimension of measurements exceeds the number of observations. The applications considered in this paper are microarray, image processing and near-infrared spectroscopy data.  相似文献   

8.
This article deals with the issue of using a suitable pseudo-likelihood, instead of an integrated likelihood, when performing Bayesian inference about a scalar parameter of interest in the presence of nuisance parameters. The proposed approach has the advantages of avoiding the elicitation on the nuisance parameters and the computation of multidimensional integrals. Moreover, it is particularly useful when it is difficult, or even impractical, to write the full likelihood function.

We focus on Bayesian inference about a scalar regression coefficient in various regression models. First, in the context of non-normal regression-scale models, we give a theroetical result showing that there is no loss of information about the parameter of interest when using a posterior distribution derived from a pseudo-likelihood instead of the correct posterior distribution. Second, we present non trivial applications with high-dimensional, or even infinite-dimensional, nuisance parameters in the context of nonlinear normal heteroscedastic regression models, and of models for binary outcomes and count data, accounting also for possibile overdispersion. In all these situtations, we show that non Bayesian methods for eliminating nuisance parameters can be usefully incorporated into a one-parameter Bayesian analysis.  相似文献   

9.
Hidden Markov random field models provide an appealing representation of images and other spatial problems. The drawback is that inference is not straightforward for these models as the normalisation constant for the likelihood is generally intractable except for very small observation sets. Variational methods are an emerging tool for Bayesian inference and they have already been successfully applied in other contexts. Focusing on the particular case of a hidden Potts model with Gaussian noise, we show how variational Bayesian methods can be applied to hidden Markov random field inference. To tackle the obstacle of the intractable normalising constant for the likelihood, we explore alternative estimation approaches for incorporation into the variational Bayes algorithm. We consider a pseudo-likelihood approach as well as the more recent reduced dependence approximation of the normalisation constant. To illustrate the effectiveness of these approaches we present empirical results from the analysis of simulated datasets. We also analyse a real dataset and compare results with those of previous analyses as well as those obtained from the recently developed auxiliary variable MCMC method and the recursive MCMC method. Our results show that the variational Bayesian analyses can be carried out much faster than the MCMC analyses and produce good estimates of model parameters. We also found that the reduced dependence approximation of the normalisation constant outperformed the pseudo-likelihood approximation in our analysis of real and synthetic datasets.  相似文献   

10.
The computational demand required to perform inference using Markov chain Monte Carlo methods often obstructs a Bayesian analysis. This may be a result of large datasets, complex dependence structures, or expensive computer models. In these instances, the posterior distribution is replaced by a computationally tractable approximation, and inference is based on this working model. However, the error that is introduced by this practice is not well studied. In this paper, we propose a methodology that allows one to examine the impact on statistical inference by quantifying the discrepancy between the intractable and working posterior distributions. This work provides a structure to analyse model approximations with regard to the reliability of inference and computational efficiency. We illustrate our approach through a spatial analysis of yearly total precipitation anomalies where covariance tapering approximations are used to alleviate the computational demand associated with inverting a large, dense covariance matrix.  相似文献   

11.
In proteomics, identification of proteins from complex mixtures of proteins extracted from biological samples is an important problem. Among the experimental technologies, mass spectrometry (MS) is the most popular one. Protein identification from MS data typically relies on a ‘two-step’ procedure of identifying the peptide first followed by the separate protein identification procedure next. In this setup, the interdependence of peptides and proteins is neglected resulting in relatively inaccurate protein identification. In this article, we propose a Markov chain Monte Carlo based Bayesian hierarchical model, a first of its kind in protein identification, which integrates the two steps and performs joint analysis of proteins and peptides using posterior probabilities. We remove the assumption of independence of proteins by using clustering group priors to the proteins based on the assumption that proteins sharing the same biological pathway are likely to be present or absent together and are correlated. The complete conditionals of the proposed joint model being tractable, we propose and implement a Gibbs sampling scheme for full posterior inference that provides the estimation and statistical uncertainties of all relevant parameters. The model has better operational characteristics compared to two existing ‘one-step’ procedures on a range of simulation settings as well as on two well-studied datasets.  相似文献   

12.
In this article, we develop a Bayesian variable selection method that concerns selection of covariates in the Poisson change-point regression model with both discrete and continuous candidate covariates. Ranging from a null model with no selected covariates to a full model including all covariates, the Bayesian variable selection method searches the entire model space, estimates posterior inclusion probabilities of covariates, and obtains model averaged estimates on coefficients to covariates, while simultaneously estimating a time-varying baseline rate due to change-points. For posterior computation, the Metropolis-Hastings within partially collapsed Gibbs sampler is developed to efficiently fit the Poisson change-point regression model with variable selection. We illustrate the proposed method using simulated and real datasets.  相似文献   

13.
In this paper, we discuss the regularization in linear-mixed quantile regression. A hierarchical Bayesian model is used to shrink the fixed and random effects towards the common population values by introducing an l1 penalty in the mixed quantile regression check function. A Gibbs sampler is developed to simulate the parameters from the posterior distributions. Through simulation studies and analysis of an age-related macular degeneration (ARMD) data, we assess the performance of the proposed method. The simulation studies and the ARMD data analysis indicate that the proposed method performs well in comparison with the other approaches.  相似文献   

14.
Screening procedures play an important role in data analysis, especially in high-throughput biological studies where the datasets consist of more covariates than independent subjects. In this article, a Bayesian screening procedure is introduced for the binary response models with logit and probit links. In contrast to many screening rules based on marginal information involving one or a few covariates, the proposed Bayesian procedure simultaneously models all covariates and uses closed-form screening statistics. Specifically, we use the posterior means of the regression coefficients as screening statistics; by imposing a generalized g-prior on the regression coefficients, we derive the analytical form of their posterior means and compute the screening statistics without Markov chain Monte Carlo implementation. We evaluate the utility of the proposed Bayesian screening method using simulations and real data analysis. When the sample size is small, the simulation results suggest improved performance with comparable computational cost.  相似文献   

15.
In semiparametric inference we distinguish between the parameter of interest which may be a location parameter, and a nuisance parameter that determines the remaining shape of the sampling distribution. As was pointed out by Diaconis and Freedman the main problem in semiparametric Bayesian inference is to obtain a consistent posterior distribution for the parameter of interest. The present paper considers a semiparametric Bayesian method based on a pivotal likelihood function. It is shown that when the parameter of interest is the median, this method produces a consistent posterior distribution and is easily implemented, Numerical comparisons with classical methods and with Bayesian methods based on a Dirichlet prior are provided. It is also shown that in the case of symmetric intervals, the classical confidence coefficients have a Bayesian interpretation as the limiting posterior probability of the interval based on the Dirichlet prior with a parameter that converges to zero.  相似文献   

16.
In this article, utilizing a scale mixture of skew-normal distribution in which mixing random variable is assumed to follow a mixture model with varying weights for each observation, we introduce a generalization of skew-normal linear regression model with the aim to provide resistant results. This model, which also includes the skew-slash distribution in a particular case, allows us to accommodate and detect outlying observations under the skew-normal linear regression model. Inferences about the model are carried out through the empirical Bayes approach. The conditions for propriety of the posterior and for existence of posterior moments are given under the standard noninformative priors for regression and scale parameters as well as proper prior for skewness parameter. Then, for Bayesian inference, a Markov chain Monte Carlo method is described. Since posterior results depend on the prior hyperparameters, we estimate them adopting the empirical Bayes method as well as using a Monte Carlo EM algorithm. Furthermore, to identify possible outliers, we also apply the Bayes factor obtained through the generalized Savage-Dickey density ratio. Examining the proposed approach on simulated instance and real data, it is found to provide not only satisfactory parameter estimates rather allow identifying outliers favorably.  相似文献   

17.
Approximate Bayesian inference on the basis of summary statistics is well-suited to complex problems for which the likelihood is either mathematically or computationally intractable. However the methods that use rejection suffer from the curse of dimensionality when the number of summary statistics is increased. Here we propose a machine-learning approach to the estimation of the posterior density by introducing two innovations. The new method fits a nonlinear conditional heteroscedastic regression of the parameter on the summary statistics, and then adaptively improves estimation using importance sampling. The new algorithm is compared to the state-of-the-art approximate Bayesian methods, and achieves considerable reduction of the computational burden in two examples of inference in statistical genetics and in a queueing model.  相似文献   

18.
Single index model conditional quantile regression is proposed in order to overcome the dimensionality problem in nonparametric quantile regression. In the proposed method, the Bayesian elastic net is suggested for single index quantile regression for estimation and variables selection. The Gaussian process prior is considered for unknown link function and a Gibbs sampler algorithm is adopted for posterior inference. The results of the simulation studies and numerical example indicate that our propose method, BENSIQReg, offers substantial improvements over two existing methods, SIQReg and BSIQReg. The BENSIQReg has consistently show a good convergent property, has the least value of median of mean absolute deviations and smallest standard deviations, compared to the other two methods.  相似文献   

19.
Bayesian statistical inference relies on the posterior distribution. Depending on the model, the posterior can be more or less difficult to derive. In recent years, there has been a lot of interest in complex settings where the likelihood is analytically intractable. In such situations, approximate Bayesian computation (ABC) provides an attractive way of carrying out Bayesian inference. For obtaining reliable posterior estimates however, it is important to keep the approximation errors small in ABC. The choice of an appropriate set of summary statistics plays a crucial role in this effort. Here, we report the development of a new algorithm that is based on least angle regression for choosing summary statistics. In two population genetic examples, the performance of the new algorithm is better than a previously proposed approach that uses partial least squares.  相似文献   

20.
Ordinary differential equations are arguably the most popular and useful mathematical tool for describing physical and biological processes in the real world. Often, these physical and biological processes are observed with errors, in which case the most natural way to model such data is via regression where the mean function is defined by an ordinary differential equation believed to provide an understanding of the underlying process. These regression based dynamical models are called differential equation models. Parameter inference from differential equation models poses computational challenges mainly due to the fact that analytic solutions to most differential equations are not available. In this paper, we propose an approximation method for obtaining the posterior distribution of parameters in differential equation models. The approximation is done in two steps. In the first step, the solution of a differential equation is approximated by the general one-step method which is a class of numerical numerical methods for ordinary differential equations including the Euler and the Runge-Kutta procedures; in the second step, nuisance parameters are marginalized using Laplace approximation. The proposed Laplace approximated posterior gives a computationally fast alternative to the full Bayesian computational scheme (such as Makov Chain Monte Carlo) and produces more accurate and stable estimators than the popular smoothing methods (called collocation methods) based on frequentist procedures. For a theoretical support of the proposed method, we prove that the Laplace approximated posterior converges to the actual posterior under certain conditions and analyze the relation between the order of numerical error and its Laplace approximation. The proposed method is tested on simulated data sets and compared with the other existing methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号