首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Count responses with structural zeros are very common in medical and psychosocial research, especially in alcohol and HIV research, and the zero-inflated Poisson (ZIP) and zero-inflated negative binomial models are widely used for modeling such outcomes. However, as alcohol drinking outcomes such as days of drinkings are counts within a given period, their distributions are bounded above by an upper limit (total days in the period) and thus inherently follow a binomial or zero-inflated binomial (ZIB) distribution, rather than a Poisson or ZIP distribution, in the presence of structural zeros. In this paper, we develop a new semiparametric approach for modeling ZIB-like count responses for cross-sectional as well as longitudinal data. We illustrate this approach with both simulated and real study data.  相似文献   

2.
While excess zeros are often thought to cause data over-dispersion (i.e. when the variance exceeds the mean), this implication is not absolute. One should instead consider a flexible class of distributions that can address data dispersion along with excess zeros. This work develops a zero-inflated sum-of-Conway-Maxwell-Poissons (ZISCMP) regression as a flexible analysis tool to model count data that express significant data dispersion and contain excess zeros. This class of models contains several special case zero-inflated regressions, including zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), zero-inflated binomial (ZIB), and the zero-inflated Conway-Maxwell-Poisson (ZICMP). Through simulated and real data examples, we demonstrate class flexibility and usefulness. We further utilize it to analyze shark species data from Australia's Great Barrier Reef to assess the environmental impact of human action on the number of various species of sharks.  相似文献   

3.
Zero-inflated count data are frequently encountered in public health and epidemiology research. Two-parts model is often used to model the excessive zeros, which are a mixture of two components: a point mass at zero and a count distribution, such as a Poisson distribution. When the rate of events per unit exposure is of interest, offset is commonly used to account for the varying extent of exposure, which is essentially a predictor whose regression coefficient is fixed at one. Such an assumption of exposure effect is, however, quite restrictive for many practical problems. Further, for zero-inflated models, offset is often only included in the count component of the model. However, the probability of excessive zero component could also be affected by the amount of ‘exposure’. We, therefore, proposed incorporating the varying exposure as a covariate rather than an offset term in both the probability of excessive zeros and conditional counts components of the zero-inflated model. A real example is used to illustrate the usage of the proposed methods, and simulation studies are conducted to assess the performance of the proposed methods for a broad variety of situations.  相似文献   

4.
In this study, estimation of the parameters of the zero-inflated count regression models and computations of posterior model probabilities of the log-linear models defined for each zero-inflated count regression models are investigated from the Bayesian point of view. In addition, determinations of the most suitable log-linear and regression models are investigated. It is known that zero-inflated count regression models cover zero-inflated Poisson, zero-inflated negative binomial, and zero-inflated generalized Poisson regression models. The classical approach has some problematic points but the Bayesian approach does not have similar flaws. This work points out the reasons for using the Bayesian approach. It also lists advantages and disadvantages of the classical and Bayesian approaches. As an application, a zoological data set, including structural and sampling zeros, is used in the presence of extra zeros. In this work, it is observed that fitting a zero-inflated negative binomial regression model creates no problems at all, even though it is known that fitting a zero-inflated negative binomial regression model is the most problematic procedure in the classical approach. Additionally, it is found that the best fitting model is the log-linear model under the negative binomial regression model, which does not include three-way interactions of factors.  相似文献   

5.
The zero-inflated regression models such as zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB) or zero-inflated generalized Poisson (ZIGP) regression models can model the count data with excess zeros. The ZINB model can handle over-dispersed and the ZIGP model can handle the over or under-dispersed count data with excess zeros as well. Moreover, the count data may be correlated because of data collection procedure or special study design. The clustered sampling approach is one of the examples in which the correlation among subjects could be defined. In such situations, a marginal model using generalized estimating equation (GEE) approach can incorporate these correlations and lead up to the relationships at the population level. In this study, the GEE-based zero-inflated generalized Poisson regression model was proposed to fit over and under-dispersed clustered count data with excess zeros.  相似文献   

6.
In several cases, count data often have excessive number of zero outcomes. This zero-inflated phenomenon is a specific cause of overdispersion, and zero-inflated Poisson regression model (ZIP) has been proposed for accommodating zero-inflated data. However, if the data continue to suggest additional overdispersion, zero-inflated negative binomial (ZINB) and zero-inflated generalized Poisson (ZIGP) regression models have been considered as alternatives. This study proposes the score test for testing ZIP regression model against ZIGP alternatives and proves that it is equal to the score test for testing ZIP regression model against ZINB alternatives. The advantage of using the score test over other alternative tests such as likelihood ratio and Wald is that the score test can be used to determine whether a more complex model is appropriate without fitting the more complex model. Applications of the proposed score test on several datasets are also illustrated.  相似文献   

7.
This article proposes a variable selection approach for zero-inflated count data analysis based on the adaptive lasso technique. Two models including the zero-inflated Poisson and the zero-inflated negative binomial are investigated. An efficient algorithm is used to minimize the penalized log-likelihood function in an approximate manner. Both the generalized cross-validation and Bayesian information criterion procedures are employed to determine the optimal tuning parameter, and a consistent sandwich formula of standard errors for nonzero estimates is given based on local quadratic approximation. We evaluate the performance of the proposed adaptive lasso approach through extensive simulation studies, and apply it to analyze real-life data about doctor visits.  相似文献   

8.
In recent years, a variety of regression models, including zero-inflated and hurdle versions, have been proposed to explain the case of a dependent variable with respect to exogenous covariates. Apart from the classical Poisson, negative binomial and generalised Poisson distributions, many proposals have appeared in the statistical literature, perhaps in response to the new possibilities offered by advanced software that now enables researchers to implement numerous special functions in a relatively simple way. However, we believe that a significant research gap remains, since very little attention has been paid to the quasi-binomial distribution, which was first proposed over fifty years ago. We believe this distribution might constitute a valid alternative to existing regression models, in situations in which the variable has bounded support. Therefore, in this paper we present a zero-inflated regression model based on the quasi-binomial distribution, taking into account the moments and maximum likelihood estimators, and perform a score test to compare the zero-inflated quasi-binomial distribution with the zero-inflated binomial distribution, and the zero-inflated model with the homogeneous model (the model in which covariates are not considered). This analysis is illustrated with two data sets that are well known in the statistical literature and which contain a large number of zeros.  相似文献   

9.
In this paper, a zero-inflated power series regression model for longitudinal count data with excess zeros is presented. We demonstrate how to calculate the likelihood for such data when it is assumed that the increment in the cumulative total follows a discrete distribution with a location parameter that depends on a linear function of explanatory variables. Simulation studies indicate that this method can provide improvements in obtaining standard errors of the estimates. We also calculate the dispersion index for this model. The influence of a small perturbation of the dispersion index of the zero-inflated model on likelihood displacement is also studied. The zero-inflated negative binomial regression model is illustrated on data regarding joint damage in psoriatic arthritis.  相似文献   

10.
There have been many methodologies developed about zero-inflated data in the field of statistics. However, there is little literature in the data mining fields, even though zero-inflated data could be easily found in real application fields. In fact, there is no decision tree method that is suitable for zero-inflated responses. To analyze continuous target variable with decision trees as one of data mining techniques, we use F-statistics (CHAID) or variance reduction (CART) criteria to find the best split. But these methods are only appropriate to a continuous target variable. If the target variable is rare events or zero-inflated count data, the above criteria could not give a good result because of its attributes. In this paper, we will propose a decision tree for zero-inflated count data, using a maximum of zero-inflated Poisson likelihood as the split criterion. In addition, using well-known data sets we will compare the performance of the split criteria. In the case when the analyst is interested in lower value groups (e.g. no defect areas, customers who do not claim), the suggested ZIP tree would be more efficient.  相似文献   

11.
In recent years, zero-inflated count data models, such as zero-inflated Poisson (ZIP) models, are widely used as the count data with extra zeros are very common in many practical problems. In order to model the correlated count data which are either clustered or repeated and to assess the effects of continuous covariates or of time scales in a flexible way, a class of semiparametric mixed-effects models for zero-inflated count data is considered. In this article, we propose a fully Bayesian inference for such models based on a data augmentation scheme that reflects both random effects of covariates and mixture of zero-inflated distribution. A computational efficient MCMC method which combines the Gibbs sampler and M-H algorithm is implemented to obtain the estimate of the model parameters. Finally, a simulation study and a real example are used to illustrate the proposed methodologies.  相似文献   

12.
The zero-inflated Poisson regression model is commonly used when analyzing economic data that come in the form of non-negative integers since it accounts for excess zeros and overdispersion of the dependent variable. However, a problem often encountered when analyzing economic data that has not been addressed for this model is multicollinearity. This paper proposes ridge regression (RR) estimators and some methods for estimating the ridge parameter k for a non-negative model. A simulation study has been conducted to compare the performance of the estimators. Both mean squared error and mean absolute error are considered as the performance criteria. The simulation study shows that some estimators are better than the commonly used maximum-likelihood estimator and some other RR estimators. Based on the simulation study and an empirical application, some useful estimators are recommended for practitioners.  相似文献   

13.
Count data often contain many zeros. In parametric regression analysis of zero-inflated count data, the effect of a covariate of interest is typically modelled via a linear predictor. This approach imposes a restrictive, and potentially questionable, functional form on the relation between the independent and dependent variables. To address the noted restrictions, a flexible parametric procedure is employed to model the covariate effect as a linear combination of fixed-knot cubic basis splines or B-splines. The semiparametric zero-inflated Poisson regression model is fitted by maximizing the likelihood function through an expectation–maximization algorithm. The smooth estimate of the functional form of the covariate effect can enhance modelling flexibility. Within this modelling framework, a log-likelihood ratio test is used to assess the adequacy of the covariate function. Simulation results show that the proposed test has excellent power in detecting the lack of fit of a linear predictor. A real-life data set is used to illustrate the practicality of the methodology.  相似文献   

14.
Count data often display excessive number of zero outcomes than are expected in the Poisson regression model. The zero-inflated Poisson regression model has been suggested to handle zero-inflated data, whereas the zero-inflated negative binomial (ZINB) regression model has been fitted for zero-inflated data with additional overdispersion. For bivariate and zero-inflated cases, several regression models such as the bivariate zero-inflated Poisson (BZIP) and bivariate zero-inflated negative binomial (BZINB) have been considered. This paper introduces several forms of nested BZINB regression model which can be fitted to bivariate and zero-inflated count data. The mean–variance approach is used for comparing the BZIP and our forms of BZINB regression model in this study. A similar approach was also used by past researchers for defining several negative binomial and zero-inflated negative binomial regression models based on the appearance of linear and quadratic terms of the variance function. The nested BZINB regression models proposed in this study have several advantages; the likelihood ratio tests can be performed for choosing the best model, the models have flexible forms of marginal mean–variance relationship, the models can be fitted to bivariate zero-inflated count data with positive or negative correlations, and the models allow additional overdispersion of the two dependent variables.  相似文献   

15.
Although count data are often collected in social, psychological, and epidemiological surveys in grouped and right-censored categories, there is a lack of statistical methods simultaneously taking both grouping and right-censoring into account. In this research, we propose a new generalized Poisson-multinomial mixture approach to model grouped and right-censored (GRC) count data. Based on a mixed Poisson-multinomial process for conceptualizing grouped and right-censored count data, we prove that the new maximum-likelihood estimator (MLE-GRC) is consistent and asymptotically normally distributed for both Poisson and zero-inflated Poisson models. The use of the MLE-GRC, implemented in an R function, is illustrated by both statistical simulation and empirical examples. This research provides a tool for epidemiologists to estimate incidence from grouped and right-censored count data and lays a foundation for regression analyses of such data structure.  相似文献   

16.
In recent years, there has been considerable interest in regression models based on zero-inflated distributions. These models are commonly encountered in many disciplines, such as medicine, public health, and environmental sciences, among others. The zero-inflated Poisson (ZIP) model has been typically considered for these types of problems. However, the ZIP model can fail if the non-zero counts are overdispersed in relation to the Poisson distribution, hence the zero-inflated negative binomial (ZINB) model may be more appropriate. In this paper, we present a Bayesian approach for fitting the ZINB regression model. This model considers that an observed zero may come from a point mass distribution at zero or from the negative binomial model. The likelihood function is utilized to compute not only some Bayesian model selection measures, but also to develop Bayesian case-deletion influence diagnostics based on q-divergence measures. The approach can be easily implemented using standard Bayesian software, such as WinBUGS. The performance of the proposed method is evaluated with a simulation study. Further, a real data set is analyzed, where we show that ZINB regression models seems to fit the data better than the Poisson counterpart.  相似文献   

17.
Count data analysis techniques have been developed in biological and medical research areas. In particular, zero-inflated versions of parametric count distributions have been used to model excessive zeros that are often present in these assays. The most common count distributions for analyzing such data are Poisson and negative binomial. However, a Poisson distribution can only handle equidispersed data and a negative binomial distribution can only cope with overdispersion. However, a Conway–Maxwell–Poisson (CMP) distribution [4] can handle a wide range of dispersion. We show, with an illustrative data set on next-generation sequencing of maize hybrids, that both underdispersion and overdispersion can be present in genomic data. Furthermore, the maize data set consists of clustered observations and, therefore, we develop inference procedures for a zero-inflated CMP regression that incorporates a cluster-specific random effect term. Unlike the Gaussian models, the underlying likelihood is computationally challenging. We use a numerical approximation via a Gaussian quadrature to circumvent this issue. A test for checking zero-inflation has also been developed in our setting. Finite sample properties of our estimators and test have been investigated by extensive simulations. Finally, the statistical methodology has been applied to analyze the maize data mentioned before.  相似文献   

18.
Quantitative fatty acid signature analysis (QFASA) produces diet estimates containing the proportion of each species of prey in a predator's diet. Since the diet estimates are compositional, often contain an abundance of zeros (signifying the absence of a species in the diet), and samples sizes are generally small, inference problems require the use of nonstandard statistical methodology. Recently, a mixture distribution involving the multiplicative logistic normal distribution (and its skew-normal extension) was introduced in relation to QFASA to manage the problematic zeros. In this paper, we examine an alternative mixture distribution, namely, the recently proposed zero-inflated beta (ZIB) distribution. A potential advantage of using the ZIB distribution over the previously considered mixture models is that it does not require transformation of the data. To assess the usefulness of the ZIB distribution in QFASA inference problems, a simulation study is first carried out which compares the small sample properties of the maximum likelihood estimators of the means. The fit of the distributions is then examined using ‘pseudo-predators’ generated from a large real-life prey base. Finally, confidence intervals for the true diet based on the ZIB distribution are compared with earlier results through a simulation study and harbor seal data.  相似文献   

19.
Longitudinal count data with excessive zeros frequently occur in social, biological, medical, and health research. To model such data, zero-inflated Poisson (ZIP) models are commonly used, after separating zero and positive responses. As longitudinal count responses are likely to be serially correlated, such separation may destroy the underlying serial correlation structure. To overcome this problem recently observation- and parameter-driven modelling approaches have been proposed. In the observation-driven model, the response at a specific time point is modelled through the responses at previous time points after incorporating serial correlation. One limitation of the observation-driven model is that it fails to accommodate the presence of any possible over-dispersion, which frequently occurs in the count responses. This limitation is overcome in a parameter-driven model, where the serial correlation is captured through the latent process using random effects. We compare the results obtained by the two models. A quasi-likelihood approach has been developed to estimate the model parameters. The methodology is illustrated with analysis of two real life datasets. To examine model performance the models are also compared through a simulation study.  相似文献   

20.
The generalized Poisson (GP) regression model has been used to model count data that exhibit over-dispersion or under-dispersion. The zero-inflated GP (ZIGP) regression model can additionally handle count data characterized by many zeros. However, the parameters of ZIGP model cannot easily be used for inference on overall exposure effects. In order to address this problem, a marginalized ZIGP is proposed to directly model the population marginal mean count. The parameters of the marginalized zero-inflated GP model are estimated by the method of maximum likelihood. The regression model is illustrated by three real-life data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号