首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonparametric models with jump points have been considered by many researchers. However, most existing methods based on least squares or likelihood are sensitive when there are outliers or the error distribution is heavy tailed. In this article, a local piecewise-modal method is proposed to estimate the regression function with jump points in nonparametric models, and a piecewise-modal EM algorithm is introduced to estimate the proposed estimator. Under some regular conditions, the large-sample theory is established for the proposed estimators. Several simulations are presented to evaluate the performances of the proposed method, which shows that the proposed estimator is more efficient than the local piecewise-polynomial regression estimator in the presence of outliers or heavy tail error distribution. What is more, the proposed procedure is asymptotically equivalent to the local piecewise-polynomial regression estimator under the assumption that the error distribution is a Gaussian distribution. The proposed method is further illustrated via the sea-level pressures.  相似文献   

2.
ABSTRACT

A quantile autoregresive model is a useful extension of classical autoregresive models as it can capture the influences of conditioning variables on the location, scale, and shape of the response distribution. However, at the extreme tails, standard quantile autoregression estimator is often unstable due to data sparsity. In this article, assuming quantile autoregresive models, we develop a new estimator for extreme conditional quantiles of time series data based on extreme value theory. We build the connection between the second-order conditions for the autoregression coefficients and for the conditional quantile functions, and establish the asymptotic properties of the proposed estimator. The finite sample performance of the proposed method is illustrated through a simulation study and the analysis of U.S. retail gasoline price.  相似文献   

3.
In this paper, we construct a non parametric estimator of conditional distribution function by the double-kernel local linear approach for left-truncated data, from which we derive the weighted double-kernel local linear estimator of conditional quantile. The asymptotic normality of the proposed estimators is also established. Finite-sample performance of the estimator is investigated via simulation.  相似文献   

4.
Abstract

The locally weighted censored quantile regression approach is proposed for panel data models with fixed effects, which allows for random censoring. The resulting estimators are obtained by employing the fixed effects quantile regression method. The weights are selected either parametrically, semi-parametrically or non-parametrically. The large panel data asymptotics are used in an attempt to cope with the incidental parameter problem. The consistency and limiting distribution of the proposed estimator are also derived. The finite sample performance of the proposed estimators are examined via Monte Carlo simulations.  相似文献   

5.
ABSTRACT

Quantile regression models, as an important tool in practice, can describe effects of risk factors on the entire conditional distribution of the response variable with its estimates robust to outliers. However, there is few discussion on quantile regression for longitudinal data with both missing responses and measurement errors, which are commonly seen in practice. We develop a weighted and bias-corrected quantile loss function for the quantile regression with longitudinal data, which allows both missingness and measurement errors. Additionally, we establish the asymptotic properties of the proposed estimator. Simulation studies demonstrate the expected performance in correcting the bias resulted from missingness and measurement errors. Finally, we investigate the Lifestyle Education for Activity and Nutrition study and confirm the effective of intervention in producing weight loss after nine month at the high quantile.  相似文献   

6.
ABSTRACT

This article considers the monitoring for variance change in nonparametric regression models. First, the local linear estimator of the regression function is given. A moving square cumulative sum procedure is proposed based on residuals of the estimator. And the asymptotic results of the statistic under the null hypothesis and the alternative hypothesis are obtained. Simulations and Application support our procedure.  相似文献   

7.
Consider the nonparametric heteroscedastic regression model Y=m(X)+σ(X)?, where m(·) is an unknown conditional mean function and σ(·) is an unknown conditional scale function. In this paper, the limit distribution of the quantile estimate for the scale function σ(X) is derived. Since the limit distribution depends on the unknown density of the errors, an empirical likelihood ratio statistic based on quantile estimator is proposed. This statistics is used to construct confidence intervals for the variance function. Under certain regularity conditions, it is shown that the quantile estimate of the scale function converges to a Brownian motion and the empirical likelihood ratio statistic converges to a chi-squared random variable. Simulation results demonstrate the superiority of the proposed method over the least squares procedure when the underlying errors have heavy tails.  相似文献   

8.
In this article, we develop estimation procedures for partially linear quantile regression models, where some of the responses are censored by another random variable. The nonparametric function is estimated by basis function approximations. The estimation procedure is easy to implement through existing weighted quantile regression, and it requires no specification of the error distributions. We show the large-sample properties of the resulting estimates, the proposed estimator of the regression parameter is root-n consistent and asymptotically normal and the estimator of the functional component achieves the optimal convergence rate of the nonparametric function. The proposed method is studied via simulations and illustrated with the analysis of a primary biliary cirrhosis (BPC) data.  相似文献   

9.
This article considers a nonparametric varying coefficient regression model with longitudinal observations. The relationship between the dependent variable and the covariates is assumed to be linear at a specific time point, but the coefficients are allowed to change over time. A general formulation is used to treat mean regression, median regression, quantile regression, and robust mean regression in one setting. The local M-estimators of the unknown coefficient functions are obtained by local linear method. The asymptotic distributions of M-estimators of unknown coefficient functions at both interior and boundary points are established. Various applications of the main results, including estimating conditional quantile coefficient functions and robustifying the mean regression coefficient functions are derived. Finite sample properties of our procedures are studied through Monte Carlo simulations.  相似文献   

10.
It is known that for nonparametric regression, local linear composite quantile regression (local linear CQR) is a more competitive technique than classical local linear regression since it can significantly improve estimation efficiency under a class of non-normal and symmetric error distributions. However, this method only applies to symmetric errors because, without symmetric condition, the estimation bias is non-negligible and therefore the resulting estimator is inconsistent. In this paper, we propose a weighted local linear CQR method for general error conditions. This method applies to both symmetric and asymmetric random errors. Because of the use of weights, the estimation bias is eliminated asymptotically and the asymptotic normality is established. Furthermore, by minimizing asymptotic variance, the optimal weights are computed and consequently the optimal estimate (the most efficient estimate) is obtained. By comparing relative efficiency theoretically or numerically, we can ensure that the new estimation outperforms the local linear CQR estimation. Finite sample behaviors conducted by simulation studies further illustrate the theoretical findings.  相似文献   

11.
The mode of a distribution provides an important summary of data and is often estimated on the basis of some non‐parametric kernel density estimator. This article develops a new data analysis tool called modal linear regression in order to explore high‐dimensional data. Modal linear regression models the conditional mode of a response Y given a set of predictors x as a linear function of x . Modal linear regression differs from standard linear regression in that standard linear regression models the conditional mean (as opposed to mode) of Y as a linear function of x . We propose an expectation–maximization algorithm in order to estimate the regression coefficients of modal linear regression. We also provide asymptotic properties for the proposed estimator without the symmetric assumption of the error density. Our empirical studies with simulated data and real data demonstrate that the proposed modal regression gives shorter predictive intervals than mean linear regression, median linear regression and MM‐estimators.  相似文献   

12.
Quantile regression is a technique to estimate conditional quantile curves. It provides a comprehensive picture of a response contingent on explanatory variables. In a flexible modeling framework, a specific form of the conditional quantile curve is not a priori fixed. This motivates a local parametric rather than a global fixed model fitting approach. A nonparametric smoothing estimator of the conditional quantile curve requires to balance between local curvature and stochastic variability. In this paper, we suggest a local model selection technique that provides an adaptive estimator of the conditional quantile regression curve at each design point. Theoretical results claim that the proposed adaptive procedure performs as good as an oracle which would minimize the local estimation risk for the problem at hand. We illustrate the performance of the procedure by an extensive simulation study and consider a couple of applications: to tail dependence analysis for the Hong Kong stock market and to analysis of the distributions of the risk factors of temperature dynamics.  相似文献   

13.
We consider the problem of estimating the quantiles of a distribution function in a fixed design regression model in which the observations are subject to random right censoring. The quantile estimator is defined via a conditional Kaplan-Meier type estimator for the distribution at a given design point. We establish an a.s. asymptotic representation for this quantile estimator, from which we obtain its asymptotic normality. Because a complicated estimation procedure is necessary for estimating the asymptotic bias and variance, we use a resampling procedure, which provides us, via an asymptotic representation for the bootstrapped estimator, with an alternative for the normal approximation.  相似文献   

14.
Outer product of gradients (OPG) achieves dimension reduction via estimating the gradients of the regression function. In this paper, we propose two novel OPG estimators via local rank regression: the rank OPG estimator and the Walsh-average OPG estimator. Both proposals guard against a wide range of error distributions, and are safe alternatives to existing OPG estimators based on local linear regression or local L1 regression. The effectiveness of the new proposals are demonstrated via extensive numerical studies.  相似文献   

15.
Compared with local polynomial quantile regression, K nearest neighbor quantile regression (KNNQR) has many advantages, such as not assuming smoothness of functions. The paper summarizes the research of KNNQR and has carried out further research on the selection of k, algorithm and Monte Carlo simulations. Additionally, simulated functions are Blocks, Bumps, HeaviSine and Doppler, which stand for jumping, volatility, mutagenicity slope and high frequency function. When function to be estimated has some jump points or catastrophe points, KNNQR is superior to local linear quantile regression in the sense of the mean squared error and mean absolute error criteria. To be mentioned, even high frequency, the superiority of KNNQR could be observed. A real data is analyzed as an illustration.  相似文献   

16.
《Statistics》2012,46(6):1269-1288
ABSTRACT

The so-called growth incidence curve (GIC) is a popular way to evaluate the distributional pattern of economic growth and pro-poorness of growth in development economics. The log-transformation of the the GIC is related to the sum of empirical quantile processes which allows for constructions of simultaneous confidence bands for the GIC. However, standard constructions of these bands tend to be too wide at the extreme points 0 and 1 because the estimator of the quantile function can be very volatile at the extreme points. In order to construct simultaneous confidence bands which are narrower at the ends, we consider the convergence of quantile processes with weight functions. In particular, we investigate the asymptotic convergence under specific weighted sup-norm metrics and compare different kinds of qualified weight functions. This implies simultaneous confidence bands that are narrower at the boundaries 0 and 1. We show in simulations that these bands have a more regular shape. Finally, we evaluate real data from Uganda with the improved confidence bands.  相似文献   

17.
ABSTRACT

The Tukey's gh distribution is widely used in situations where skewness and elongation are important features of the data. As the distribution is defined through a quantile transformation of the normal, the likelihood function cannot be written in closed form and exact maximum likelihood estimation is unfeasible. In this paper we exploit a novel approach based on a frequentist reinterpretation of Approximate Bayesian Computation for approximating the maximum likelihood estimates of the gh distribution. This method is appealing because it only requires the ability to sample the distribution. We discuss the choice of the input parameters by means of simulation experiments and provide evidence of superior performance in terms of Root-Mean-Square-Error with respect to the standard quantile estimator. Finally, we give an application to operational risk measurement.  相似文献   

18.
This paper investigates the estimation of parameters in a multivariate quantile regression model when the investigator wants to evaluate the associated distribution function. It proposes a new directional quantile estimator with the following properties: (1) it applies to an arbitrary number of random variables; (2) it is equivalent to estimating the distribution function allowing for non-convex distribution contours; (3) it satisfies nice equivariance properties; (4) it has desirable statistical properties (i.e., consistency and asymptotic normality); and (5) its implementation involves a modest computational burden: our proposed estimator can be obtained by solving parametric linear programming problems. As such, this paper expands the range of applications of quantile estimation for multivariate regression models.  相似文献   

19.
Local linear regression involves fitting a straight line segment over a small region whose midpoint is the target point x, and the local linear estimate at x   is the estimated intercept of that straight line segment, with an asymptotic bias of order h2h2 and variance of order (nh)-1(nh)-1 (h is the bandwidth). In this paper, we propose a new estimator, the double-smoothing local linear estimator, which is constructed by integrally combining all fitted values at x   of local lines in its neighborhood with another round of smoothing. The proposed estimator attempts to make use of all information obtained from fitting local lines. Without changing the order of variance, the new estimator can reduce the bias to an order of h4h4. The proposed estimator has better performance than local linear regression in situations with considerable bias effects; it also has less variability and more easily overcomes the sparse data problem than local cubic regression. At boundary points, the proposed estimator is comparable to local linear regression. Simulation studies are conducted and an ethanol example is used to compare the new approach with other competitive methods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号