首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper gives a self-contained account of minimum disper­sion linear unbiased estimation of the expectation vector in a linear model with the dispersion matrix belonging to some, rather arbitrary, set of nonnegative definite matrices. The approach to linear estimation in general linear models recommended here is a direct generalization of some ideas and results presented by Rao (1973, 19 74) for the case of a general Gauss-Markov model

A new insight into the nature of some estimation problems originaly arising in the context of a general Gauss-Markov model as well as the correspondence of results known in the literature to those obtained in the present paper for general linear models are also given. As preliminary results the theory of projectors defined by Rao (1973) is extended.  相似文献   

2.
Generalized linear mixed models (GLMMs) are widely used to analyse non-normal response data with extra-variation, but non-robust estimators are still routinely used. We propose robust methods for maximum quasi-likelihood and residual maximum quasi-likelihood estimation to limit the influence of outlying observations in GLMMs. The estimation procedure parallels the development of robust estimation methods in linear mixed models, but with adjustments in the dependent variable and the variance component. The methods proposed are applied to three data sets and a comparison is made with the nonparametric maximum likelihood approach. When applied to a set of epileptic seizure data, the methods proposed have the desired effect of limiting the influence of outlying observations on the parameter estimates. Simulation shows that one of the residual maximum quasi-likelihood proposals has a smaller bias than those of the other estimation methods. We further discuss the equivalence of two GLMM formulations when the response variable follows an exponential family. Their extensions to robust GLMMs and their comparative advantages in modelling are described. Some possible modifications of the robust GLMM estimation methods are given to provide further flexibility for applying the method.  相似文献   

3.
Log-normal linear models are widely used in applications, and many times it is of interest to predict the response variable or to estimate the mean of the response variable at the original scale for a new set of covariate values. In this paper we consider the problem of efficient estimation of the conditional mean of the response variable at the original scale for log-normal linear models. Several existing estimators are reviewed first, including the maximum likelihood (ML) estimator, the restricted ML (REML) estimator, the uniformly minimum variance unbiased (UMVU) estimator, and a bias-corrected REML estimator. We then propose two estimators that minimize the asymptotic mean squared error and the asymptotic bias, respectively. A parametric bootstrap procedure is also described to obtain confidence intervals for the proposed estimators. Both the new estimators and the bootstrap procedure are very easy to implement. Comparisons of the estimators using simulation studies suggest that our estimators perform better than the existing ones, and the bootstrap procedure yields confidence intervals with good coverage properties. A real application of estimating the mean sediment discharge is used to illustrate the methodology.  相似文献   

4.
The problem of selecting the largest treatment parameter, and simultaneously estimating the selected treatment parameter, in a general linear model is considered in the decision theoretic Bayes approach. Both cases, where the error variance is known or unknown, are included. Bayes decision rules are derived for noninformative priors and for normal priors. The problem of finding Bayes designs, i.e. designs that have minimum Bayes risk, within a given class of designs is also discussed.  相似文献   

5.
In this paper, we consider James–Stein shrinkage and pretest estimation methods for time series following generalized linear models when it is conjectured that some of the regression parameters may be restricted to a subspace. Efficient estimation strategies are developed when there are many covariates in the model and some of them are not statistically significant. Statistical properties of the pretest and shrinkage estimation methods including asymptotic distributional bias and risk are developed. We investigate the relative performances of shrinkage and pretest estimators with respect to the unrestricted maximum partial likelihood estimator (MPLE). We show that the shrinkage estimators have a lower relative mean squared error as compared to the unrestricted MPLE when the number of significant covariates exceeds two. Monte Carlo simulation experiments were conducted for different combinations of inactive covariates and the performance of each estimator was evaluated in terms of its mean squared error. The practical benefits of the proposed methods are illustrated using two real data sets.  相似文献   

6.
In this paper we study semiparametric generalized additive models in which some part of the additive function is linear. We study the semiparametric efficiency under this regression model for the exponential family. We also present an asymptotically efficient estimation procedure based on the generalized profile likelihood approach.  相似文献   

7.
We consider a non-centered parameterization of the standard random-effects model, which is based on the Cholesky decomposition of the variance-covariance matrix. The regression type structure of the non-centered parameterization allows us to use Bayesian variable selection methods for covariance selection. We search for a parsimonious variance-covariance matrix by identifying the non-zero elements of the Cholesky factors. With this method we are able to learn from the data for each effect whether it is random or not, and whether covariances among random effects are zero. An application in marketing shows a substantial reduction of the number of free elements in the variance-covariance matrix.  相似文献   

8.
In survey sampling, policy decisions regarding the allocation of resources to sub‐groups of a population depend on reliable predictors of their underlying parameters. However, in some sub‐groups, called small areas due to small sample sizes relative to the population, the information needed for reliable estimation is typically not available. Consequently, data on a coarser scale are used to predict the characteristics of small areas. Mixed models are the primary tools in small area estimation (SAE) and also borrow information from alternative sources (e.g., previous surveys and administrative and census data sets). In many circumstances, small area predictors are associated with location. For instance, in the case of chronic disease or cancer, it is important for policy makers to understand spatial patterns of disease in order to determine small areas with high risk of disease and establish prevention strategies. The literature considering SAE with spatial random effects is sparse and mostly in the context of spatial linear mixed models. In this article, small area models are proposed for the class of spatial generalized linear mixed models to obtain small area predictors and corresponding second‐order unbiased mean squared prediction errors via Taylor expansion and a parametric bootstrap approach. The performance of the proposed approach is evaluated through simulation studies and application of the models to a real esophageal cancer data set from Minnesota, U.S.A. The Canadian Journal of Statistics 47: 426–437; 2019 © 2019 Statistical Society of Canada  相似文献   

9.
Data from past time periods and temporal correlation are rich sources of information for estimating small area parameters at the current period. This paper investigates the use of unit-level temporal linear mixed models for estimating linear parameters. Two models are considered, with domain and domain-time random effects. The first model assumes time independency and the second one AR(1)-type time correlation. They are fitted by a Fisher-scoring algorithm that calculates the residual maximum likelihood estimators of the model parameters. Based on the introduced models, empirical best linear unbiased predictors of small area linear parameters are studied, and analytic estimators for evaluating the performance of their mean squared errors are proposed. Three simulation experiments are carried out to study the behaviour of the fitting algorithm, the small area predictors and the estimators of the mean squared error. By using data of the Spanish surveys of income and living conditions of 2004–2008, an application to the estimation of 2008 average normalized net annual incomes in Spanish provinces by sex is given.  相似文献   

10.
Summary.  In health sciences, medicine and social sciences linear mixed effects models are often used to analyse time-structured data. The search for optimal designs for these models is often hampered by two problems. The first problem is that these designs are only locally optimal. The second problem is that an optimal design for one model may not be optimal for other models. In this paper the maximin principle is adopted to handle both problems, simultaneously. The maximin criterion is formulated by means of a relative efficiency measure, which gives an indication of how much efficiency is lost when the uncertainty about the models over a prior domain of parameters is taken into account. The procedure is illustrated by means of three growth studies. Results are presented for a vocabulary growth study from education, a bone gain study from medical research and an epidemiological decline in height study. It is shown that, for the mixed effects polynomial models that are applied to these studies, the maximin designs remain highly efficient for different sets of models and combinations of parameter values.  相似文献   

11.
Spatially correlated data appear in many environmental studies, and consequently there is an increasing demand for estimation methods that take account of spatial correlation and thereby improve the accuracy of estimation. In this paper we propose an iterative nonparametric procedure for modelling spatial data with general correlation structures. The asymptotic normality of the proposed estimators is established under mild conditions. We demonstrate, using both simulation and case studies, that the proposed estimators are more efficient than the traditional locally linear methods which fail to account for spatial correlation.  相似文献   

12.
Explicit expressions for Bayes invariant quadratic estimates, biased and unbiased, are presented and proved to cover the entire class of admissible estimates in the considered classes. An unbalanced genetic model is studied for demonstration.  相似文献   

13.
We propose a new methodology for maximum likelihood estimation in mixtures of non linear mixed effects models (NLMEM). Such mixtures of models include mixtures of distributions, mixtures of structural models and mixtures of residual error models. Since the individual parameters inside the NLMEM are not observed, we propose to combine the EM algorithm usually used for mixtures models when the mixture structure concerns an observed variable, with the Stochastic Approximation EM (SAEM) algorithm, which is known to be suitable for maximum likelihood estimation in NLMEM and also has nice theoretical properties. The main advantage of this hybrid procedure is to avoid a simulation step of unknown group labels required by a “full” version of SAEM. The resulting MSAEM (Mixture SAEM) algorithm is now implemented in the Monolix software. Several criteria for classification of subjects and estimation of individual parameters are also proposed. Numerical experiments on simulated data show that MSAEM performs well in a general framework of mixtures of NLMEM. Indeed, MSAEM provides an estimator close to the maximum likelihood estimator in very few iterations and is robust with regard to initialization. An application to pharmacokinetic (PK) data demonstrates the potential of the method for practical applications.  相似文献   

14.
The traditional method for estimating or predicting linear combinations of the fixed effects and realized values of the random effects in mixed linear models is first to estimate the variance components and then to proceed as if the estimated values of the variance components were the true values. This two-stage procedure gives unbiased estimators or predictors of the linear combinations provided the data vector is symmetrically distributed about its expected value and provided the variance component estimators are translation-invariant and are even functions of the data vector. The standard procedures for estimating the variance components yield even, translation-invariant estimators.  相似文献   

15.
Linear mixed models based on the normality assumption are widely used in health related studies. Although the normality assumption leads to simple, mathematically tractable, and powerful tests, violation of the assumption may easily invalidate the statistical inference. Transformation of variables is sometimes used to make normality approximately true. In this paper we consider another approach by replacing the normal distributions in linear mixed models by skew-t distributions, which account for skewness and heavy tails for both the random effects and the errors. The full likelihood-based estimator is often difficult to use, but a 3-step estimation procedure is proposed, followed by an application to the analysis of deglutition apnea duration in normal swallows. The example shows that skew-t models often entail more reliable inference than Gaussian models for the skewed data.  相似文献   

16.
The general mixed linear model, containing both the fixed and random effects, is considered. Using gamma priors for the variance components, the conditional posterior distributions of the fixed effects and the variance components, conditional on the random effects, are obtained. Using the normal approximation for the multiple t distribution, approximations are obtained for the posterior distributions of the variance components in infinite series form. The same approximation Is used to obtain closed expressions for the moments of the variance components. An example is considered to illustrate the procedure and a numerical study examines the closeness of the approximations.  相似文献   

17.
Statistical Methods & Applications - We consider a re-sampling scheme for estimation of the population parameters in the mixed-effects nonlinear regression models of the type used, for example,...  相似文献   

18.
19.
In this paper, we discuss how a regression model, with a non-continuous response variable, which allows for dependency between observations, should be estimated when observations are clustered and measurements on the subjects are repeated. The cluster sizes are assumed to be large. We find that the conventional estimation technique suggested by the literature on generalized linear mixed models (GLMM) is slow and sometimes fails due to non-convergence and lack of memory on standard PCs. We suggest to estimate the random effects as fixed effects by generalized linear model and to derive the covariance matrix from these estimates. A simulation study shows that our proposal is feasible in terms of mean-square error and computation time. We recommend that our proposal be implemented in the software of GLMM techniques so that the estimation procedure can switch between the conventional technique and our proposal, depending on the size of the clusters.  相似文献   

20.
To build a linear mixed effects model, one needs to specify the random effects and often the associated parametrized covariance matrix structure. Inappropriate specification of the structures can result in the covariance parameters of the model not identifiable. Non-identifiability can result in extraordinary wide confidence intervals, and unreliable parameter inference. Sometimes software produces implication of model non-identifiability, but not always. In the simulation of fitting non-identifiable models we tried, about half of the times the software output did not look abnormal. We derive necessary and sufficient conditions of covariance parameters identifiability which does not require any prior model fitting. The results are easy to implement and are applicable to commonly used covariance matrix structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号