共查询到20条相似文献,搜索用时 0 毫秒
1.
Random coefficient regression models have been used t odescribe repeated measures on members of a sample of n in dividuals . Previous researchers have proposed methods of estimating the mean parameters of such models. Their methods require that eachindividual be observed under the same settings of independent variablesor , lesss stringently , that the number of observations ,r , on each individual be the same. Under the latter restriction ,estimators of mean regression parameters exist which are consist ent as both r→∞and n→∞ and efficient as r→∞, and large sample ( r large ) tests of mean parameters are available . These results are easily extended to the case where not a11 individuals are observed an equal number of times provided limit are taken as min(r) → ∞. Existing methods of inference , however, are not justified by the current literature when n is large and r is small, as is the case i n many bio-medical applications . The primary con tribution of the current paper is a derivation of the asymptotic properties of modifications of existing estimators as n alone tends to infinity, r fixed. From these properties it is shown that existing methods of inference, which are currently justified only when min(r) is large, are also justifiable when n is large and min(r) is small. A secondary contribution is the definition of a positive definite estimator of the covariance matrix for the random coefficients in these models. Use of this estimator avoids computational problems that can otherwise arise. 相似文献
2.
Yuan Liu Jian-Qiang Zhao Zhang-Xiao Miao 《Journal of Statistical Computation and Simulation》2018,88(11):2215-2231
This paper is concerned with the estimation and inference in generalized semi-varying coefficient models. An orthogonal projection local quasi-likelihood estimation is investigated, which can easily be used to estimate the model parametric and nonparametric parts. Then an empirical likelihood logarithmic approach to construct the confidence regions/intervals of the nonparametric parts is developed. Under some mild conditions, the asymptotic properties of the resulting estimators are studied explicitly, respectively. Some simulation studies are carried out to examine the finite sample performance of the proposed methods. Finally, the methodologies are illustrated by a real data set. 相似文献
3.
《Journal of Statistical Computation and Simulation》2012,82(18):3544-3564
ABSTRACTSiZer (significant zero crossings of derivatives) is an effective tool for exploring significant features in curves from the viewpoint of the scale space theory. In this paper, a SiZer approach is developed for generalized varying coefficient models (GVCMs) in order to achieve the task of understanding dynamic characteristics of the regression relationship at multiscales. The proposed SiZer method is based on the local-linear maximum likelihood estimation of GVCMs and the one-step estimation procedure is employed to alleviate the computational cost of estimating the coefficients and their derivatives at different scales. Simulation studies are performed to assess the performance of the SiZer inference and two real-world examples are given to demonstrate its applications. 相似文献
4.
The paper develops some objective priors for correlation coefficient of the bivariate normal distribution. The criterion used is the asymptotic matching of coverage probabilities of Bayesian credible intervals with the corresponding frequentist coverage probabilities. The paper uses various matching criteria, namely, quantile matching, highest posterior density matching, and matching via inversion of test statistics. Each matching criterion leads to a different prior for the parameter of interest. We evaluate their performance by comparing credible intervals through simulation studies. In addition, inference through several likelihood-based methods have been discussed. 相似文献
5.
6.
In this paper, we extend the varying coefficient partially linear model to the varying coefficient partially nonlinear model in which the linear part of the varying coefficient partially linear model is replaced by a nonlinear function of the covariates. A profile nonlinear least squares estimation procedure for the parameter vector and the coefficient function vector of the varying coefficient partially nonlinear model is proposed and the asymptotic properties of the resulting estimators are established. We further propose a generalized likelihood ratio (GLR) test to check whether or not the varying coefficients in the model are constant. The asymptotic null distribution of the GLR statistic is derived and a residual-based bootstrap procedure is also suggested to derive the p-value of the GLR test. Some simulations are conducted to assess the performance of the proposed estimating and testing procedures and the results show that both the procedures perform well in finite samples. Furthermore, a real data example is given to demonstrate the application of the proposed model and its estimating and testing procedures. 相似文献
7.
This paper proposes an estimation procedure for a class of semi-varying coefficient regression models when the covariates of the linear part are subject to measurement errors. Initial estimates for the regression and varying coefficients are first constructed by the profile least-squares procedure without input from heteroscedasticity, a bias-corrected kernel estimate for the variance function then is proposed, which in turn is used to define re-weighted bias-corrected estimates of the regression and varying coefficients. Large sample properties of the proposed estimates are thoroughly investigated. The finite-sample performance of the proposed estimates is assessed by an extensive simulation study and an application to the Boston housing data set. The simulation results show that the re-weighted bias-corrected estimates outperform the initial estimates and the naive estimates. 相似文献
8.
This paper studies the partially time-varying coefficient models where some covariates are measured with additive errors. In order to overcome the bias of the usual profile least squares estimation when measurement errors are ignored, we propose a modified profile least squares estimator of the regression parameter and construct estimators of the nonlinear coefficient function and error variance. The proposed three estimators are proved to be asymptotically normal under mild conditions. In addition, we introduce the profile likelihood ratio test and then demonstrate that it follows an asymptotically χ2 distribution under the null hypothesis. Finite sample behavior of the estimators is investigated via simulations too. 相似文献
9.
Alan. Winterbottom 《统计学通讯:模拟与计算》2013,42(6):599-609
Harley (1954) gave asymptotic expansions for the distributio function and for percentiles of the distribution of the bivariate normal sample correlation coefficient. To the stated order of approximation these expansions were incomplete in that contributions from some higher cumulants were not taken into account. In this article the completed expansions are given together with an asymptotic expansion yielding approximate confidence limits for the population correlation coefficient. Numerical comparisons indicate that asymptotic expansions are superior to other suggested approximate methods 相似文献
10.
In this article, we study the varying coefficient partially nonlinear model with measurement errors in the nonparametric part. A local corrected profile nonlinear least-square estimation procedure is proposed and the asymptotic properties of the resulting estimators are established. Further, a generalized likelihood ratio (GLR) statistic is proposed to test whether the varying coefficients are constant. The asymptotic null distribution of the statistic is obtained and a residual-based bootstrap procedure is employed to compute the p-value of the statistic. Some simulations are conducted to evaluate the performance of the proposed methods. The results show that the estimating and testing procedures work well in finite samples. 相似文献
11.
Mark J. Brewer 《Statistics and Computing》2003,13(3):209-219
The problem of inference in Bayesian Normal mixture models is known to be difficult. In particular, direct Bayesian inference (via quadrature) suffers from a combinatorial explosion in having to consider every possible partition of n observations into k mixture components, resulting in a computation time which is O(k
n). This paper explores the use of discretised parameters and shows that for equal-variance mixture models, direct computation time can be reduced to O(D
k
n
k), where relevant continuous parameters are each divided into D regions. As a consequence, direct inference is now possible on genuine data sets for small k, where the quality of approximation is determined by the level of discretisation. For large problems, where the computational complexity is still too great in O(D
k
n
k) time, discretisation can provide a convergence diagnostic for a Markov chain Monte Carlo analysis. 相似文献
12.
13.
We develop a hierarchical Bayesian approach for inference in random coefficient dynamic panel data models. Our approach allows for the initial values of each unit's process to be correlated with the unit-specific coefficients. We impose a stationarity assumption for each unit's process by assuming that the unit-specific autoregressive coefficient is drawn from a logitnormal distribution. Our method is shown to have favorable properties compared to the mean group estimator in a Monte Carlo study. We apply our approach to analyze energy and protein intakes among individuals from the Philippines. 相似文献
14.
Statistical inference for restricted partially linear varying coefficient errors-in-variables models
As a useful extension of partially linear models and varying coefficient models, the partially linear varying coefficient model is useful in statistical modelling. This paper considers statistical inference for the semiparametric model when the covariates in the linear part are measured with additive error and some additional linear restrictions on the parametric component are available. We propose a restricted modified profile least-squares estimator for the parametric component, and prove the asymptotic normality of the proposed estimator. To test hypotheses on the parametric component, we propose a test statistic based on the difference between the corrected residual sums of squares under the null and alterative hypotheses, and show that its limiting distribution is a weighted sum of independent chi-square distributions. We also develop an adjusted test statistic, which has an asymptotically standard chi-squared distribution. Some simulation studies are conducted to illustrate our approaches. 相似文献
15.
We propose a method for saddlepoint approximating the distribution of estimators in single lag subset autoregressive models of order one. By viewing the estimator as the root of an appropriate estimating equation, the approach circumvents the difficulty inherent in more standard methods that require an explicit expression for the estimator to be available. Plots of the densities reveal that the distributions of the Burg and maximum likelihood estimators are nearly identical. We show that one possible reason for this is the fact that Burg enjoys the property of estimation equation optimality among a class of estimators expressible as a ratio of quadratic forms in normal random variables, which includes Yule–Walker and least squares. By inverting a two-sided hypothesis test, we show how small sample confidence intervals for the parameters can be constructed from the saddlepoint approximations. Simulation studies reveal that the resulting intervals generally outperform traditional ones based on asymptotics and have good robustness properties with respect to heavy-tailed and skewed innovations. The applicability of the models is illustrated by analyzing a longitudinal data set in a novel manner. 相似文献
16.
The outer product of gradients (OPG) estimation procedure based on least squares (LS) approach has been presented by Xia et al. [An adaptive estimation of dimension reduction space. J Roy Statist Soc Ser B. 2002;64:363–410] to estimate the single-index parameter in partially linear single-index models (PLSIM). However, its asymptotic property has not been established yet and the efficiency of LS-based method can be significantly affected by outliers and heavy-tailed distributions. In this paper, we firstly derive the asymptotic property of OPG estimator developed by Xia et al. [An adaptive estimation of dimension reduction space. J Roy Statist Soc Ser B. 2002;64:363–410] in theory, and a novel robust estimation procedure combining the ideas of OPG and local rank (LR) inference is further developed for PLSIM along with its theoretical property. Then, we theoretically derive the asymptotic relative efficiency (ARE) of the proposed LR-based procedure with respect to LS-based method, which is shown to possess an expression that is closely related to that of the signed-rank Wilcoxon test in comparison with the t-test. Moreover, we demonstrate that the new proposed estimator has a great efficiency gain across a wide spectrum of non-normal error distributions and almost not lose any efficiency for the normal error. Even in the worst case scenarios, the ARE owns a lower bound equalling to 0.864 for estimating the single-index parameter and a lower bound being 0.8896 for estimating the nonparametric function respectively, versus the LS-based estimators. Finally, some Monte Carlo simulations and a real data analysis are conducted to illustrate the finite sample performance of the estimators. 相似文献
17.
In this paper, we propose a robust statistical inference approach for the varying coefficient partially nonlinear models based on quantile regression. A three-stage estimation procedure is developed to estimate the parameter and coefficient functions involved in the model. Under some mild regularity conditions, the asymptotic properties of the resulted estimators are established. Some simulation studies are conducted to evaluate the finite performance as well as the robustness of our proposed quantile regression method versus the well known profile least squares estimation procedure. Moreover, the Boston housing price data is given to further illustrate the application of the new method. 相似文献
18.
A score test of location is derived for data from a distorted normal distribution. A simulation study compares the performance of this test to the t-test and Wilcoxon test for symmetric data from such a distribution. For this type of data the score test can be considerably more powerful than both the t-test and Wilcoxon test. This suggests that such a score test may be useful in practice when variations from normality can be modeled by such a family of distributions. 相似文献
19.
20.
Due to the widespread use of the coefficient of variation in empirical finance, we derive its asymptotic sampling distribution in the case of non-iid random variables to deal with autocorrelation and/or conditional heteroskedasticity stylized facts of financial returns. We also propose statistical tests for the comparison of two coefficients of variation based on asymptotic normality and studentized time-series bootstrap. In an illustrative example, we analyze the monthly return volatility of six stock market indexes during the years 1990–2007. 相似文献