共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider the problem of hazard rate estimation in the presence of covariates, for survival data with censoring indicators missing at random. We propose in the context usually denoted by MAR (missing at random, in opposition to MCAR, missing completely at random, which requires an additional independence assumption), nonparametric adaptive strategies based on model selection methods for estimators admitting finite dimensional developments in functional orthonormal bases. Theoretical risk bounds are provided, they prove that the estimators behave well in term of mean square integrated error (MISE). Simulation experiments illustrate the statistical procedure. 相似文献
2.
Xinyuan Song Liuquan Sun Xiaoyun Mu Gregg E. Dinse 《Revue canadienne de statistique》2010,38(3):333-351
In this article, the authors consider a semiparametric additive hazards regression model for right‐censored data that allows some censoring indicators to be missing at random. They develop a class of estimating equations and use an inverse probability weighted approach to estimate the regression parameters. Nonparametric smoothing techniques are employed to estimate the probability of non‐missingness and the conditional probability of an uncensored observation. The asymptotic properties of the resulting estimators are derived. Simulation studies show that the proposed estimators perform well. They motivate and illustrate their methods with data from a brain cancer clinical trial. The Canadian Journal of Statistics 38: 333–351; 2010 © 2010 Statistical Society of Canada 相似文献
3.
《Statistical Methodology》2008,5(6):515-527
The kernel smoothed Nelson–Aalen estimator has been well investigated, but is unsuitable when some of the censoring indicators are missing. A representation introduced by Dikta, however, facilitates hazard estimation when there are missing censoring indicators. In this article, we investigate (i) a kernel smoothed semiparametric hazard estimator and (ii) a kernel smoothed “pre-smoothed” Nelson–Aalen estimator. We derive the asymptotic normality of the proposed estimators and compare their asymptotic variances. 相似文献
4.
Statistical Methods & Applications - Semiparametric likelihoods for regression models with missing at random data (Chen in J Am Stat Assoc 99:1176–1189, 2004, Zhang and Rockette in J Stat... 相似文献
5.
Randomized response is an interview technique designed to eliminate response bias when sensitive questions are asked. In this paper, we present a logistic regression model on randomized response data when the covariates on some subjects are missing at random. In particular, we propose Horvitz and Thompson (1952)-type weighted estimators by using different estimates of the selection probabilities. We present large sample theory for the proposed estimators and show that they are more efficient than the estimator using the true selection probabilities. Simulation results support theoretical analysis. We also illustrate the approach using data from a survey of cable TV. 相似文献
6.
Survival data with missing censoring indicators are frequently encountered in biomedical studies. In this paper, we consider statistical inference for this type of data under the additive hazard model. Reweighting methods based on simple and augmented inverse probability are proposed. The asymptotic properties of the proposed estimators are established. Furthermore, we provide a numerical technique for checking adequacy of the fitted model with missing censoring indicators. Our simulation results show that the proposed estimators outperform the simple and augmented inverse probability weighted estimators without reweighting. The proposed methods are illustrated by analyzing a dataset from a breast cancer study. 相似文献
7.
In this paper, we study linear regression analysis when some of the censoring indicators are missing at random. We define regression calibration estimate, imputation estimate and inverse probability weighted estimate for the regression coefficient vector based on the weighted least squared approach due to Stute (1993), and prove all the estimators are asymptotically normal. A simulation study was conducted to evaluate the finite properties of the proposed estimators, and a real data example is provided to illustrate our methods. 相似文献
8.
Tobit regression for modeling mean survival time using data subject to multiple sources of censoring 下载免费PDF全文
Mean survival time is often of inherent interest in medical and epidemiologic studies. In the presence of censoring and when covariate effects are of interest, Cox regression is the strong default, but mostly due to convenience and familiarity. When survival times are uncensored, covariate effects can be estimated as differences in mean survival through linear regression. Tobit regression can validly be performed through maximum likelihood when the censoring times are fixed (ie, known for each subject, even in cases where the outcome is observed). However, Tobit regression is generally inapplicable when the response is subject to random right censoring. We propose Tobit regression methods based on weighted maximum likelihood which are applicable to survival times subject to both fixed and random censoring times. Under the proposed approach, known right censoring is handled naturally through the Tobit model, with inverse probability of censoring weighting used to overcome random censoring. Essentially, the re‐weighting data are intended to represent those that would have been observed in the absence of random censoring. We develop methods for estimating the Tobit regression parameter, then the population mean survival time. A closed form large‐sample variance estimator is proposed for the regression parameter estimator, with a semiparametric bootstrap standard error estimator derived for the population mean. The proposed methods are easily implementable using standard software. Finite‐sample properties are assessed through simulation. The methods are applied to a large cohort of patients wait‐listed for kidney transplantation. 相似文献
9.
Yu-Ye Zou 《Statistics》2017,51(6):1214-1237
In this paper, we define the nonlinear wavelet estimator of density for the right censoring model with the censoring indicator missing at random (MAR), and develop its asymptotic expression for mean integrated squared error (MISE). Unlike for kernel estimator, the MISE expression of the estimator is not affected by the presence of discontinuities in the curve. Meanwhile, asymptotic normality of the estimator is established. The proposed estimator can reduce to the estimator defined by Li [Non-linear wavelet-based density estimators under random censorship. J Statist Plann Inference. 2003;117(1):35–58] when the censoring indicator MAR does not occur and a bandwidth in non-parametric estimation is close to zero. Also, we define another two nonlinear wavelet estimators of the density. A simulation is done to show the performance of the three proposed estimators. 相似文献
10.
In this note, we consider the problem of estimating regression coefficients when there are missing observations of some explanatory variables. Following Dagenais (1973), Gourieroux and Monfort (1981), and Conniffe (1983a, 1983b), we assume auxiliary relationships exist among explanatory varibles. Several estimatprs and their interrelationships are discussed. We begin with the model of Gourieroux and
Monfort (1981) 相似文献
Monfort (1981) 相似文献
11.
In this note, we consider the problem of estimating regression coefficients when there are missing observations of some explanatory variables. Following Dagenais (1973), Gourieroux and Monfort (1981), and Conniffe (1983a, 1983b), we assume auxiliary relationships exist among explanatory varibles. Several estimatprs and their interrelationships are discussed. We begin with the model of Gourieroux and Monfort (1981) 相似文献
12.
AbstractThe locally weighted censored quantile regression approach is proposed for panel data models with fixed effects, which allows for random censoring. The resulting estimators are obtained by employing the fixed effects quantile regression method. The weights are selected either parametrically, semi-parametrically or non-parametrically. The large panel data asymptotics are used in an attempt to cope with the incidental parameter problem. The consistency and limiting distribution of the proposed estimator are also derived. The finite sample performance of the proposed estimators are examined via Monte Carlo simulations. 相似文献
13.
Aris Perperoglou 《Statistical Methods and Applications》2011,20(4):451-462
Cox’s proportional hazards model is the most common way to analyze survival data. The model can be extended in the presence of collinearity to include a ridge penalty, or in cases where a very large number of coefficients (e.g. with microarray data) has to be estimated. To maximize the penalized likelihood, optimal weights of the ridge penalty have to be obtained. However, there is no definite rule for choosing the penalty weight. One approach suggests maximization of the weights by maximizing the leave-one-out cross validated partial likelihood, however this is time consuming and computationally expensive, especially in large datasets. We suggest modelling survival data through a Poisson model. Using this approach, the log-likelihood of a Poisson model is maximized by standard iterative weighted least squares. We will illustrate this simple approach, which includes smoothing of the hazard function and move on to include a ridge term in the likelihood. We will then maximize the likelihood by considering tools from generalized mixed linear models. We will show that the optimal value of the penalty is found simply by computing the hat matrix of the system of linear equations and dividing its trace by a product of the estimated coefficients. 相似文献
14.
Puying Zhao Hui Zhao Niansheng Tang Zhaohai Li 《Journal of nonparametric statistics》2017,29(2):189-212
Efficient statistical inference on nonignorable missing data is a challenging problem. This paper proposes a new estimation procedure based on composite quantile regression (CQR) for linear regression models with nonignorable missing data, that is applicable even with high-dimensional covariates. A parametric model is assumed for modelling response probability, which is estimated by the empirical likelihood approach. Local identifiability of the proposed strategy is guaranteed on the basis of an instrumental variable approach. A set of data-based adaptive weights constructed via an empirical likelihood method is used to weight CQR functions. The proposed method is resistant to heavy-tailed errors or outliers in the response. An adaptive penalisation method for variable selection is proposed to achieve sparsity with high-dimensional covariates. Limiting distributions of the proposed estimators are derived. Simulation studies are conducted to investigate the finite sample performance of the proposed methodologies. An application to the ACTG 175 data is analysed. 相似文献
15.
Let Y be a response variable, possibly multivariate, with a density function f (y|x, v; β) conditional on vectors x and v of covariates and a vector β of unknown parameters. The authors consider the problem of estimating β when the values taken by the covariate vector v are available for all observations while some of those taken by the covariate x are missing at random. They compare the profile estimator to several alternatives, both in terms of bias and standard deviation, when the response and covariates are discrete or continuous. 相似文献
16.
17.
18.
AbstractHandling data with the nonignorably missing mechanism is still a challenging problem in statistics. In this paper, we develop a fully Bayesian adaptive Lasso approach for quantile regression models with nonignorably missing response data, where the nonignorable missingness mechanism is specified by a logistic regression model. The proposed method extends the Bayesian Lasso by allowing different penalization parameters for different regression coefficients. Furthermore, a hybrid algorithm that combined the Gibbs sampler and Metropolis-Hastings algorithm is implemented to simulate the parameters from posterior distributions, mainly including regression coefficients, shrinkage coefficients, parameters in the non-ignorable missing models. Finally, some simulation studies and a real example are used to illustrate the proposed methodology. 相似文献
19.
Missing covariate values is a common problem in survival analysis. In this paper we propose a novel method for the Cox regression model that is close to maximum likelihood but avoids the use of the EM-algorithm. It exploits that the observed hazard function is multiplicative in the baseline hazard function with the idea being to profile out this function before carrying out the estimation of the parameter of interest. In this step one uses a Breslow type estimator to estimate the cumulative baseline hazard function. We focus on the situation where the observed covariates are categorical which allows us to calculate estimators without having to assume anything about the distribution of the covariates. We show that the proposed estimator is consistent and asymptotically normal, and derive a consistent estimator of the variance–covariance matrix that does not involve any choice of a perturbation parameter. Moderate sample size performance of the estimators is investigated via simulation and by application to a real data example. 相似文献
20.
《Journal of Statistical Computation and Simulation》2012,82(16):3188-3204
ABSTRACTThis paper analyses the behaviour of the goodness-of-fit tests for regression models. To this end, it uses statistics based on an estimation of the integrated regression function with missing observations either in the response variable or in some of the covariates. It proposes several versions of one empirical process, constructed from a previous estimation, that uses only the complete observations or replaces the missing observations with imputed values. In the case of missing covariates, a link model is used to fill the missing observations with other complete covariates. In all the situations, Bootstrap methodology is used to calibrate the distribution of the test statistics. A broad simulation study compares the different procedures based on empirical regression methodology, with smoothed tests previously studied in the literature. The comparison reflects the effect of the correlation between the covariates in the tests based on the imputed sample for missing covariates. In addition, the paper proposes a computational binning strategy to evaluate the tests based on an empirical process for large data sets. Finally, two applications to real data illustrate the performance of the tests. 相似文献