首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

To estimate causal treatment effects, we propose a new matching approach based on the reduced covariates obtained from sufficient dimension reduction. Compared with the original covariates and the propensity score, which are commonly used for matching in the literature, the reduced covariates are nonparametrically estimable and are effective in imputing the missing potential outcomes, under a mild assumption on the low-dimensional structure of the data. Under the ignorability assumption, the consistency of the proposed approach requires a weaker common support condition. In addition, researchers are allowed to employ different reduced covariates to find matched subjects for different treatment groups. We develop relevant asymptotic results and conduct simulation studies as well as real data analysis to illustrate the usefulness of the proposed approach.  相似文献   

2.
Matched case–control designs are commonly used in epidemiological studies for estimating the effect of exposure variables on the risk of a disease by controlling the effect of confounding variables. Due to retrospective nature of the study, information on a covariate could be missing for some subjects. A straightforward application of the conditional logistic likelihood for analyzing matched case–control data with the partially missing covariate may yield inefficient estimators of the parameters. A robust method has been proposed to handle this problem using an estimated conditional score approach when the missingness mechanism does not depend on the disease status. Within the conditional logistic likelihood framework, an empirical procedure is used to estimate the odds of the disease for the subjects with missing covariate values. The asymptotic distribution and the asymptotic variance of the estimator when the matching variables and the completely observed covariates are categorical. The finite sample performance of the proposed estimator is assessed through a simulation study. Finally, the proposed method has been applied to analyze two matched case–control studies. The Canadian Journal of Statistics 38: 680–697; 2010 © 2010 Statistical Society of Canada  相似文献   

3.
The sensitivity of multiple imputation methods to deviations from their distributional assumptions is investigated using simulations, where the parameters of scientific interest are the coefficients of a linear regression model, and values in predictor variables are missing at random. The performance of a newly proposed imputation method based on generalized additive models for location, scale, and shape (GAMLSS) is investigated. Although imputation methods based on predictive mean matching are virtually unbiased, they suffer from mild to moderate under-coverage, even in the experiment where all variables are jointly normal distributed. The GAMLSS method features better coverage than currently available methods.  相似文献   

4.
In this paper we study the cure rate survival model involving a competitive risk structure with missing categorical covariates. A parametric distribution that can be written as a sequence of one-dimensional conditional distributions is specified for the missing covariates. We consider the missing data at random situation so that the missing covariates may depend only on the observed ones. Parameter estimates are obtained by using the EM algorithm via the method of weights. Extensive simulation studies are conducted and reported to compare estimates efficiency with and without missing data. As expected, the estimation approach taking into consideration the missing covariates presents much better efficiency in terms of mean square errors than the complete case situation. Effects of increasing cured fraction and censored observations are also reported. We demonstrate the proposed methodology with two real data sets. One involved the length of time to obtain a BS degree in Statistics, and another about the time to breast cancer recurrence.  相似文献   

5.
Missing covariates data with censored outcomes put a challenge in the analysis of clinical data especially in small sample settings. Multiple imputation (MI) techniques are popularly used to impute missing covariates and the data are then analyzed through methods that can handle censoring. However, techniques based on MI are available to impute censored data also but they are not much in practice. In the present study, we applied a method based on multiple imputation by chained equations to impute missing values of covariates and also to impute censored outcomes using restricted survival time in small sample settings. The complete data were then analyzed using linear regression models. Simulation studies and a real example of CHD data show that the present method produced better estimates and lower standard errors when applied on the data having missing covariate values and censored outcomes than the analysis of the data having censored outcome but excluding cases with missing covariates or the analysis when cases with missing covariate values and censored outcomes were excluded from the data (complete case analysis).  相似文献   

6.
In clinical trials we always expect some missing data. If data are missing completely at random, then missing data can be ignored for the purpose of statistical inference. In most situation, however, ignoring missing data will introduce bias. Adjustment is possible for missing data if the missing mechanism is known, which is rare in real problems. Our approach is to estimate directly the mean outcome of each treatment group in the presence of missing data. To this end, we post-stratify all the subjects by the expected value of outcome (or by a variable predictive of the outcome) so that subjects within a stratum may be considered homogeneous with respect to the expected outcome, and assume that subjects within a stratum are missing at random. We apply this post-stratification approach to a recently concluded clinical trial where a high proportion of data are missing and the missingness depends on the same factors affecting the outcome variable. A simulation study shows that the post-stratification approach reduces the bias substantially compared to the naive approach where only non-missing subjects are analyzed.  相似文献   

7.
ABSTRACT

This paper analyses the behaviour of the goodness-of-fit tests for regression models. To this end, it uses statistics based on an estimation of the integrated regression function with missing observations either in the response variable or in some of the covariates. It proposes several versions of one empirical process, constructed from a previous estimation, that uses only the complete observations or replaces the missing observations with imputed values. In the case of missing covariates, a link model is used to fill the missing observations with other complete covariates. In all the situations, Bootstrap methodology is used to calibrate the distribution of the test statistics. A broad simulation study compares the different procedures based on empirical regression methodology, with smoothed tests previously studied in the literature. The comparison reflects the effect of the correlation between the covariates in the tests based on the imputed sample for missing covariates. In addition, the paper proposes a computational binning strategy to evaluate the tests based on an empirical process for large data sets. Finally, two applications to real data illustrate the performance of the tests.  相似文献   

8.
Semiparametric models provide a more flexible form for modeling the relationship between the response and the explanatory variables. On the other hand in the literature of modeling for the missing variables, canonical form of the probability of the variable being missing (p) is modeled taking a fully parametric approach. Here we consider a regression spline based semiparametric approach to model the missingness mechanism of nonignorably missing covariates. In this model the relationship between the suitable canonical form of p (e.g. probit p) and the missing covariate is modeled through several splines. A Bayesian procedure is developed to efficiently estimate the parameters. A computationally advantageous prior construction is proposed for the parameters of the semiparametric part. A WinBUGS code is constructed to apply Gibbs sampling to obtain the posterior distributions. We show through an extensive Monte Carlo simulation experiment that response model coefficent estimators maintain better (when the true missingness mechanism is nonlinear) or equivalent (when the true missingness mechanism is linear) bias and efficiency properties with the use of proposed semiparametric missingness model compared to the conventional model.  相似文献   

9.
Some new results of a distance—based (DB) model for prediction with mixed variables are presented and discussed. This model can be thought of as a linear model where predictor variables for a response Y are obtained from the observed ones via classic multidimensional scaling. A coefficient is introduced in order to choose the most predictive dimensions, providing a solution to the problem of small variances and a very large number n of observations (the dimensionality increases as n). The problem of missing data is explored and a DB solution is proposed. It is shown that this approach can be regarded as a kind of ridge regression when the usual Euclidean distance is used.  相似文献   

10.
We derive the optimal regression function (i.e., the best approximation in the L2 sense) when the vector of covariates has a random dimension. Furthermore, we consider applications of these results to problems in statistical regression and classification with missing covariates. It will be seen, perhaps surprisingly, that the correct regression function for the case with missing covariates can sometimes perform better than the usual regression function corresponding to the case with no missing covariates. This is because even if some of the covariates are missing, an indicator random variable δδ, which is always observable, and is equal to 1 if there are no missing values (and 0 otherwise), may have far more information and predictive power about the response variable Y than the missing covariates do. We also propose kernel-based procedures for estimating the correct regression function nonparametrically. As an alternative estimation procedure, we also consider the least-squares method.  相似文献   

11.
Unity measure errors (UME) in numerical survey data can determine serious bias in the estimates of interest. In this paper, a finite Gaussian mixture model is used to identify observations affected by UME and to robustly estimate the target parameters in presence of this type of error. In the proposed model, the mixture components are associated to the different error patterns across the variables. We follow a multiple imputation approach in a Bayesian setting that allows us to handle missing values in data. In this framework, the assessment of the uncertainty associated with both errors and missingness is based on repeatedly drawing from the predictive distribution of the true non contaminated data given the observed data. The draws are obtained through a suitable version of the data augmentation algorithm. Applications to both simulated and real data are presented.  相似文献   

12.
Summary.  We propose to use calibrated imputation to compensate for missing values. This technique consists of finding final imputed values that are as close as possible to preliminary imputed values and are calibrated to satisfy constraints. Preliminary imputed values, potentially justified by an imputation model, are obtained through deterministic single imputation. Using appropriate constraints, the resulting imputed estimator is asymptotically unbiased for estimation of linear population parameters such as domain totals. A quasi-model-assisted approach is considered in the sense that inferences do not depend on the validity of an imputation model and are made with respect to the sampling design and a non-response model. An imputation model may still be used to generate imputed values and thus to improve the efficiency of the imputed estimator. This approach has the characteristic of handling naturally the situation where more than one imputation method is used owing to missing values in the variables that are used to obtain imputed values. We use the Taylor linearization technique to obtain a variance estimator under a general non-response model. For the logistic non-response model, we show that ignoring the effect of estimating the non-response model parameters leads to overestimating the variance of the imputed estimator. In practice, the overestimation is expected to be moderate or even negligible, as shown in a simulation study.  相似文献   

13.
In this paper, we develop Bayesian methodology and computational algorithms for variable subset selection in Cox proportional hazards models with missing covariate data. A new joint semi-conjugate prior for the piecewise exponential model is proposed in the presence of missing covariates and its properties are examined. The covariates are assumed to be missing at random (MAR). Under this new prior, a version of the Deviance Information Criterion (DIC) is proposed for Bayesian variable subset selection in the presence of missing covariates. Monte Carlo methods are developed for computing the DICs for all possible subset models in the model space. A Bone Marrow Transplant (BMT) dataset is used to illustrate the proposed methodology.  相似文献   

14.
In this paper we consider a problem from hematopoietic cell transplant (HCT) studies where there is interest on assessing the effect of haplotype match for donor and patient on the cumulative incidence function for a right censored competing risks data. For the HCT study, donor??s and patient??s genotype are fully observed and matched but their haplotypes are missing. In this paper we describe how to deal with missing covariates of each individual for competing risks data. We suggest a procedure for estimating the cumulative incidence functions for a flexible class of regression models when there are missing data, and establish the large sample properties. Small sample properties are investigated using simulations in a setting that mimics the motivating haplotype matching problem. The proposed approach is then applied to the HCT study.  相似文献   

15.
In the analysis of time-to-event data with multiple causes using a competing risks Cox model, often the cause of failure is unknown for some of the cases. The probability of a missing cause is typically assumed to be independent of the cause given the time of the event and covariates measured before the event occurred. In practice, however, the underlying missing-at-random assumption does not necessarily hold. Motivated by colorectal cancer molecular pathological epidemiology analysis, we develop a method to conduct valid analysis when additional auxiliary variables are available for cases only. We consider a weaker missing-at-random assumption, with missing pattern depending on the observed quantities, which include the auxiliary covariates. We use an informative likelihood approach that will yield consistent estimates even when the underlying model for missing cause of failure is misspecified. The superiority of our method over naive methods in finite samples is demonstrated by simulation study results. We illustrate the use of our method in an analysis of colorectal cancer data from the Nurses’ Health Study cohort, where, apparently, the traditional missing-at-random assumption fails to hold.  相似文献   

16.
In longitudinal studies, as repeated observations are made on the same individual the response variables will usually be correlated. In analyzing such data, this dependence must be taken into account to avoid misleading inferences. The focus of this paper is to apply a logistic marginal model with Markovian dependence proposed by Azzalini [A. Azzalini, Logistic regression for autocorrelated data with application to repeated measures, Biometrika 81 (1994) 767–775] to the study of the influence of time-dependent covariates on the marginal distribution of the binary response in serially correlated binary data. We have shown how to construct the model so that the covariates relate only to the mean value of the process, independent of the association parameters. After formulating the proposed model for repeated measures data, the same approach is applied to missing data. An application is provided to the diabetes mellitus data of registered patients at the Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders (BIRDEM) in 1984, using both time stationary and time varying covariates.  相似文献   

17.
A major survey of the determinants of access to primary education in Madagascar was carried out in 1994. The probability of enrolment, probability of admission, delay before beginning school, probability of repeating a year and probability of dropping out were studied. The results of the survey are briefly described. In the analysis, one major problem was non-random missing values in the covariates. Some simple methods were developed for detecting whether a response variable depends on the missingness of a given covariate and whether eliminating the missing values would distort the resulting model. A way of incorporating covariates with randomly missing values was used such that the individuals having the missing values did not need to be eliminated. These methods are described and examples are given on how they were applied for one of the key covariates that had a large number of non-random missing values and for one for which the values appear to be randomly missing.  相似文献   

18.
Multivariate mixture regression models can be used to investigate the relationships between two or more response variables and a set of predictor variables by taking into consideration unobserved population heterogeneity. It is common to take multivariate normal distributions as mixing components, but this mixing model is sensitive to heavy-tailed errors and outliers. Although normal mixture models can approximate any distribution in principle, the number of components needed to account for heavy-tailed distributions can be very large. Mixture regression models based on the multivariate t distributions can be considered as a robust alternative approach. Missing data are inevitable in many situations and parameter estimates could be biased if the missing values are not handled properly. In this paper, we propose a multivariate t mixture regression model with missing information to model heterogeneity in regression function in the presence of outliers and missing values. Along with the robust parameter estimation, our proposed method can be used for (i) visualization of the partial correlation between response variables across latent classes and heterogeneous regressions, and (ii) outlier detection and robust clustering even under the presence of missing values. We also propose a multivariate t mixture regression model using MM-estimation with missing information that is robust to high-leverage outliers. The proposed methodologies are illustrated through simulation studies and real data analysis.  相似文献   

19.
We propose a flexible model approach for the distribution of random effects when both response variables and covariates have non-ignorable missing values in a longitudinal study. A Bayesian approach is developed with a choice of nonparametric prior for the distribution of random effects. We apply the proposed method to a real data example from a national long-term survey by Statistics Canada. We also design simulation studies to further check the performance of the proposed approach. The result of simulation studies indicates that the proposed approach outperforms the conventional approach with normality assumption when the heterogeneity in random effects distribution is salient.  相似文献   

20.
We consider logistic regression with covariate measurement error. Most existing approaches require certain replicates of the error‐contaminated covariates, which may not be available in the data. We propose generalized method of moments (GMM) nonparametric correction approaches that use instrumental variables observed in a calibration subsample. The instrumental variable is related to the underlying true covariates through a general nonparametric model, and the probability of being in the calibration subsample may depend on the observed variables. We first take a simple approach adopting the inverse selection probability weighting technique using the calibration subsample. We then improve the approach based on the GMM using the whole sample. The asymptotic properties are derived, and the finite sample performance is evaluated through simulation studies and an application to a real data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号