共查询到20条相似文献,搜索用时 0 毫秒
1.
Although both widely used in the financial industry, there is quite often very little justification why GARCH or stochastic volatility is preferred over the other in practice. Most of the relevant literature focuses on the comparison of the fit of various volatility models to a particular data set, which sometimes may be inconclusive due to the statistical similarities of both processes. With an ever growing interest among the financial industry in the risk of extreme price movements, it is natural to consider the selection between both models from an extreme value perspective. By studying the dependence structure of the extreme values of a given series, we are able to clearly distinguish GARCH and stochastic volatility models and to test statistically which one better captures the observed tail behaviour. We illustrate the performance of the method using some stock market returns and find that different volatility models may give a better fit to the upper or lower tails. 相似文献
2.
3.
Threshold autoregressive models are widely used in time‐series applications. When building or using such a model, it is important to know whether conditional heteroscedasticity exists. The authors propose a nonparametric test of this hypothesis. They develop the large‐sample theory of a test of nonlinear conditional heteroscedasticity adapted to nonlinear autoregressive models and study its finite‐sample properties through simulations. They also provide percentage points for carrying out this test, which is found to have very good power overall. 相似文献
4.
Mike K. P. So Cathy W. S. Chen Feng-Chi Liu 《Journal of the Royal Statistical Society. Series C, Applied statistics》2006,55(2):201-224
Summary. We develop an efficient way to select the best subset autoregressive model with exogenous variables and generalized autoregressive conditional heteroscedasticity errors. One main feature of our method is to select important autoregressive and exogenous variables, and at the same time to estimate the unknown parameters. The method proposed uses the stochastic search idea. By adopting Markov chain Monte Carlo techniques, we can identify the best subset model from a large of number of possible choices. A simulation experiment shows that the method is very effective. Misspecification in the mean equation can also be detected by our model selection method. In the application to the stock-market data of seven countries, the lagged 1 US return is found to have a strong influence on the other stock-market returns. 相似文献
5.
Modeling the relationship between multiple financial markets has had a great deal of attention in both literature and real-life applications. One state-of-the-art technique is that the individual financial market is modeled by generalized autoregressive conditional heteroskedasticity (GARCH) process, while market dependence is modeled by copula, e.g. dynamic asymmetric copula-GARCH. As an extension, we propose a dynamic double asymmetric copula (DDAC)-GARCH model to allow for the joint asymmetry caused by the negative shocks as well as by the copula model. Furthermore, our model adopts a more intuitive way of constructing the sample correlation matrix. Our new model yet satisfies the positive-definite condition as found in dynamic conditional correlation-GARCH and constant conditional correlation-GARCH models. The simulation study shows the performance of the maximum likelihood estimate for DDAC-GARCH model. As a case study, we apply this model to examine the dependence between China and US stock markets since 1990s. We conduct a series of likelihood ratio test tests that demonstrate our extension (dynamic double joint asymmetry) is adequate in dynamic dependence modeling. Also, we propose a simulation method involving the DDAC-GARCH model to estimate value at risk (VaR) of a portfolio. Our study shows that the proposed method depicts VaR much better than well-established variance–covariance method. 相似文献
6.
We consider a generalized exponential (GEXP) model in the frequency domain for modeling seasonal long-memory time series. This model generalizes the fractional exponential (FEXP) model [Beran, J., 1993. Fitting long-memory models by generalized linear regression. Biometrika 80, 817–822] to allow the singularity in the spectral density occurring at an arbitrary frequency for modeling persistent seasonality and business cycles. Moreover, the short-memory structure of this model is characterized by the Bloomfield [1973. An exponential model for the spectrum of a scalar time series. Biometrika 60, 217–226] model, which has a fairly flexible semiparametric form. The proposed model includes fractionally integrated processes, Bloomfield models, FEXP models as well as GARMA models [Gray, H.L., Zhang, N.-F., Woodward, W.A., 1989. On generalized fractional processes. J. Time Ser. Anal. 10, 233–257] as special cases. We develop a simple regression method for estimating the seasonal long-memory parameter. The asymptotic bias and variance of the corresponding long-memory estimator are derived. Our methodology is applied to a sunspot data set and an Internet traffic data set for illustration. 相似文献
7.
Nikolai Dokuchaev 《Journal of nonparametric statistics》2014,26(2):373-384
We consider estimation of the historical volatility of stock prices. It is assumed that the stock prices are represented as time series formed as samples of the solution of a stochastic differential equation with random and time-varying parameters; these parameters are not observable directly and have unknown evolution law. The price samples are available with limited frequency only. In this setting, the estimation has to be based on short time series, and the estimation error can be significant. We suggest some supplements to the existing nonparametric methods of volatility estimation. Two modifications of the standard summation formula for the volatility are derived. In addition, a linear transformation eliminating the appreciation rate and preserving the volatility is suggested. 相似文献
8.
Henri Karttunen 《Scandinavian Journal of Statistics》2020,47(3):787-816
We define a nonlinear autoregressive time series model based on the generalized hyperbolic distribution in an attempt to model time series with non-Gaussian features such as skewness and heavy tails. We show that the resulting process has a simple condition for stationarity and it is also ergodic. An empirical example with a forecasting experiment is presented to illustrate the features of the proposed model. 相似文献
9.
In this work we propose an autoregressive model with parameters varying in time applied to irregularly spaced non-stationary time series. We expand all the functional parameters in a wavelet basis and estimate the coefficients by least squares after truncation at a suitable resolution level. We also present some simulations in order to evaluate both the estimation method and the model behavior on finite samples. Applications to silicates and nitrites irregularly observed data are provided as well. 相似文献
10.
Makram Talih Nicolas Hengartner 《Journal of the Royal Statistical Society. Series B, Statistical methodology》2005,67(3):321-341
Summary. When modelling multivariate financial data, the problem of structural learning is compounded by the fact that the covariance structure changes with time. Previous work has focused on modelling those changes by using multivariate stochastic volatility models. We present an alternative to these models that focuses instead on the latent graphical structure that is related to the precision matrix. We develop a graphical model for sequences of Gaussian random vectors when changes in the underlying graph occur at random times, and a new block of data is created with the addition or deletion of an edge. We show how a Bayesian hierarchical model incorporates both the uncertainty about that graph and the time variation thereof. 相似文献
11.
We describe how to formulate a matching pursuit algorithm which successively approximates a periodic non-stationary time series with orthogonal projections onto elements of a suitable dictionary. We discuss how to construct such dictionaries derived from the maximal overlap (undecimated) discrete wavelet transform (MODWT). Unlike the standard discrete wavelet transform (DWT), the MODWT is equivariant under circular shifts and may be computed for an arbitrary length time series, not necessarily a multiple of a power of 2. We point out that when using the MODWT and continuing past the level where the filters are wrapped, the norms of the dictionary elements may, depending on N, deviate from the required value of unity and require renormalization.We analyse a time series of subtidal sea levels from Crescent City, California. The matching pursuit shows in an iterative fashion how localized dictionary elements (scale and position) account for residual variation, and in particular emphasizes differences in construction for varying parts of the series. 相似文献
12.
For financial volatilities such as realized volatility and volatility index, a new parametric quantile forecast strategy is proposed, focusing on forecast interval and value at risk (VaR) forecast. This fully addresses asymmetries in 3 parts: mean, volatility and distribution. The asymmetries are addressed by the LHAR (leverage heterogeneous autoregressive) model of McAleer and Medeiros (2008) and Corsi and Reno (2009) for the mean part, by the EGARCH model for the volatility part, and by the skew-t distribution for the error distribution part. The method is applied to the realized volatilities and the volatility indexes of the US S&P 500 index, the US NASDAQ index, the Korea KOSPI index in which significant asymmetries are identified. Considerable out-of-sample forecast improvements of the forecast interval and VaR forecast are demonstrated for the volatilities: forecast intervals of volatilities have better coverages with shorter lengths and VaR forecasts of volatility indexes have better violations if asymmetries are properly addressed rather than ignored. The proposed parametric method reveals considerably better out-of-sample performance than the recently proposed semiparametric quantile regression approach of Zikes and Barunik (2016). 相似文献
13.
José D. Bermúdez Ana Corberán-Vallet Enriqueta Vercher 《Journal of statistical planning and inference》2009
This paper deals with the prediction of time series with missing data using an alternative formulation for Holt's model with additive errors. This formulation simplifies both the calculus of maximum likelihood estimators of all the unknowns in the model and the calculus of point forecasts. In the presence of missing data, the EM algorithm is used to obtain maximum likelihood estimates and point forecasts. Based on this application we propose a leave-one-out algorithm for the data transformation selection problem which allows us to analyse Holt's model with multiplicative errors. Some numerical results show the performance of these procedures for obtaining robust forecasts. 相似文献
14.
Hongli Niu 《Journal of applied statistics》2013,40(10):2188-2203
We investigate the power-law scaling behaviors of returns for a financial price process which is developed by the voter interacting dynamic system in comparison with the real financial market index (Shanghai Composite Index). The voter system is a continuous time Markov process, which originally represents a voter's attitude on a particular topic, that is, voters reconsider their opinions at times distributed according to independent exponential random variables. In this paper, the detrended fluctuation analysis method is employed to explore the long range power-law correlations of return time series for different values of parameters in the financial model. The findings show no indication or very weak long-range power-law correlations for the simulated returns but strong long-range dependence for the absolute returns. The multiplier distribution is studied to demonstrate directly the existence of scale invariance in the actual data of the Shanghai Stock Exchange and the simulation data of the model by comparison. Moreover, the Zipf analysis is applied to investigate the statistical behaviors of frequency functions and the distributions of the returns. By a comparative study, the simulation data for our constructed price model exhibits very similar behaviors to the real stock index, this indicates somewhat rationality of our model to the market application. 相似文献
15.
Camillo Cammarota 《Journal of applied statistics》2017,44(7):1269-1281
We consider the distribution of the turning point location of time series modeled as the sum of deterministic trend plus random noise. If the variables are modeled by shifted exponentials, whose location parameters define the trend, we provide a formula for computing the distribution of the turning point location and consequently to estimate a confidence interval for the location. We test this formula in simulated data series having a trend with asymmetric minimum, investigating the coverage rate as a function of a bandwidth parameter. The method is applied to estimate the confidence interval of the minimum location of two types of real-time series: the RT intervals extracted from the electrocardiogram recorded during the exercise test and an economic indicator, the current account balance. We discuss the connection with stochastic ordering. 相似文献
16.
In this article, we consider a Bayesian analysis of a possible change in the parameters of autoregressive time series of known order p, AR(p). An unconditional Bayesian test based on highest posterior density (HPD) credible sets is determined. The test is useful to detect a change in any one of the parameters separately. Using the Gibbs sampler algorithm, we approximate the posterior densities of the change point and other parameters to calculate the p-values that define our test. 相似文献
17.
This paper provides a potentially valuable insight on how to assess if the forecasts from an autoregressive moving average model based on aggregated data could be substantially improved through disaggregation. It is argued that, theoretically, the absence of moving average (MA) terms indicates that no forecasting efficiency improvements can be achieved through disaggregation. In practice, it is found that there is a strong correlation between the statistical significance of the MA component in the aggregate model and the magnitude of the forecast mean square error (MSE) decreases that can be achieved through disaggregation. That is, if a model includes significant MA terms, the forecast MSE improvements that may be gained from disaggregation could be substantial. Otherwise, they are more likely to be relatively small or non-existent. 相似文献
18.
Robert M. Steward 《Journal of Statistical Computation and Simulation》2016,86(13):2625-2643
ABSTRACTWe propose a semiparametric approach to estimate the existence and location of a statistical change-point to a nonlinear multivariate time series contaminated with an additive noise component. In particular, we consider a p-dimensional stochastic process of independent multivariate normal observations where the mean function varies smoothly except at a single change-point. Our approach involves conducting a Bayesian analysis on the empirical detail coefficients of the original time series after a wavelet transform. If the mean function of our time series can be expressed as a multivariate step function, we find our Bayesian-wavelet method performs comparably with classical parametric methods such as maximum likelihood estimation. The advantage of our multivariate change-point method is seen in how it applies to a much larger class of mean functions that require only general smoothness conditions. 相似文献
19.
Masaki Narukawa 《Journal of nonparametric statistics》2016,28(2):272-295
This paper considers a semiparametric estimation of the memory parameter in a cyclical long-memory time series, which exhibits a strong dependence on cyclical behaviour, using the Whittle likelihood based on generalised exponential (GEXP) models. The proposed estimation is included in the so-called broadband or global method and uses information from the spectral density at all frequencies. We establish the consistency and the asymptotic normality of the estimated memory parameter for a linear process and thus do not require Gaussianity. A simulation study conducted using Monte Carlo experiments shows that the proposed estimation works well compared to other existing semiparametric estimations. Moreover, we provide an empirical application of the proposed estimation, applying it to the growth rate of Japan's industrial production index and detecting its cyclical persistence. 相似文献
20.
This paper demonstrates the utilization of wavelet-based tools for the analysis and prediction of financial time series exhibiting strong long-range dependence (LRD). Commonly emerging markets' stock returns are characterized by LRD. Therefore, we track the LRD evolvement for the return series of six Southeast European stock indices through the application of a wavelet-based semi-parametric method. We further engage the á trous wavelet transform in order to extract deeper knowledge on the returns term structure and utilize it for prediction purposes. In particular, a multiscale autoregressive (MAR) model is fitted and its out-of-sample forecast performance is benchmarked to that of ARMA. Additionally, a data-driven MAR feature selection procedure is outlined. We find that the wavelet-based method captures adequately LRD dynamics both in calm as well as in turmoil periods detecting the presence of transitional changes. At the same time, the MAR model handles with the complicated autocorrelation structure implied by the LRD in a parsimonious way achieving better performance. 相似文献