首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
This article studies the probabilistic structure and asymptotic inference of the first-order periodic generalized autoregressive conditional heteroscedasticity (PGARCH(1, 1)) models in which the parameters in volatility process are allowed to switch between different regimes. First, we establish necessary and sufficient conditions for a PGARCH(1, 1) process to have a unique stationary solution (in periodic sense) and for the existence of moments of any order. Second, using the representation of squared PGARCH(1, 1) model as a PARMA(1, 1) model, we then consider Yule-Walker type estimators for the parameters in PGARCH(1, 1) model and derives their consistency and asymptotic normality. The estimator can be surprisingly efficient for quite small numbers of autocorrelations and, in some cases can be more efficient than the least squares estimate (LSE). We use a residual bootstrap to define bootstrap estimators for the Yule-Walker estimates and prove the consistency of this bootstrap method. A set of numerical experiments illustrates the practical relevance of our theoretical results.  相似文献   

2.
Kurt Hoffmann 《Statistics》2013,47(3):302-311
The purpose of this paper consists in deriving estimators which are less sensitive than the least squares estimator, when the assumption that the expectation vector lies in a certain linear subspace is violated. The obtained robust estimators are convex combinations of the least squares estimator and of the random vector Y.  相似文献   

3.
Abstract

For an orthogonally blocked experiment, Khuri [Khuri, A. I. (1992). Response surface models with random block effects. Technometrics 34:26–37] has shown that the ordinary least squares estimator, the generalized least squares estimator and the intra-block estimator of the factor effects in a response surface model with random block effects coincide. The ordinary least squares estimator ignores the blocks, whereas the generalized least squares and the intra-block estimators treat the block effects as random and fixed, respectively. As shown in this paper, the equivalence does not hold for the estimation of the intercept when the block sizes are heterogeneous. Practical examples are given to illustrate the theoretical results.  相似文献   

4.
Abstract

This article concerns the stochastically constrained linear model under a biased assumption. We propose a quasi-stochastically constrained least squares estimator. Furthermore, we provide the expectation of this estimator, demonstrate its consistency and asymptotic normality. In the end of the article, the simulation study of the new estimator shows that it is superior to the least squares estimator, ridge estimator, and the linear constrained estimators under certain conditions by comparing the mean squared errors of these estimators.  相似文献   

5.
The problem of multicollinearity and outliers in the data set produce undesirable effects on the ordinary least squares estimator. Therefore, robust two parameter ridge estimation based on M-estimator (ME) is introduced to deal with multicollinearity and outliers in the y-direction. The proposed estimator outperforms ME, two parameter ridge estimator and robust ridge M-estimator according to mean square error criterion. Moreover, a numerical example and a Monte Carlo simulation experiment are presented.  相似文献   

6.
It is well known that the ordinary least squares estimator of in the general linear model E y = , cov y = σ2 V, can be the best linear unbiased estimator even if V is not a multiple of the identity matrix. This article presents, in a historical perspective, the development of the several conditions for the ordinary least squares estimator to be best linear unbiased. Various characterizations of these conditions, using generalized inverses and orthogonal projectors, along with several examples, are also given. In addition, a complete set of references is provided.  相似文献   

7.

We incorporate new techniques for obtaining unbiased estimators of gradients from single simulations of stochastic systems in optimization procedures. We develop an "enhanced" least squares estimator of the optimum which incorporates information about both the function and its gradient and improves substantially on techniques which use only the function. We also propose a sequential design to use with the enhanced least squares estimator to optimize a regression function when it is evaluated by simulation.  相似文献   

8.
In this we consider the problem of model selection for infinite variance time series. We introduce a group of model selection critera based on a general loss function Ψ. This family includes various generalizations of predictive least square and AIC Parameter estimation is carried out using Ψ. We use two loss functions commonly used in robust estimation and show that certain criteria out perform the conventional approach based on least squares or Yule-Walker estima­tion for heavy tailed innovations. Our conclusions are based on a comprehensive study of the performance of competing criteria for a wide selection of AR(2) models. We also consider the performance of these techniques when the ‘true’ model is not contained in the family of candidate models.  相似文献   

9.
Abstract

This article investigates slow-explosive AR(1) processes, which converge to a random walk (RW) process with logarithm rates, to fill the gap between nearly non-stationary AR(1) and moderately deviated AR(1) processes, and derives the asymptotics of the least squares estimator using central limit theorems for (reduced) U-statistic. We successfully establish the smooth link between the nearly non-stationary AR(1) and the moderately deviated AR(1) processes. Some novel results are reported, which include the convergence of the least squares estimator to a biased fractional Brownian motion.  相似文献   

10.
In the multiple linear regression analysis, the ridge regression estimator and the Liu estimator are often used to address multicollinearity. Besides multicollinearity, outliers are also a problem in the multiple linear regression analysis. We propose new biased estimators based on the least trimmed squares (LTS) ridge estimator and the LTS Liu estimator in the case of the presence of both outliers and multicollinearity. For this purpose, a simulation study is conducted in order to see the difference between the robust ridge estimator and the robust Liu estimator in terms of their effectiveness; the mean square error. In our simulations, the behavior of the new biased estimators is examined for types of outliers: X-space outlier, Y-space outlier, and X-and Y-space outlier. The results for a number of different illustrative cases are presented. This paper also provides the results for the robust ridge regression and robust Liu estimators based on a real-life data set combining the problem of multicollinearity and outliers.  相似文献   

11.
ABSTRACT

In this paper, we show the validity of the adaptive least absolute shrinkage and selection operator (LASSO) procedure in estimating stationary autoregressive distributed lag(p,q) models with innovations in a broad class of conditionally heteroskedastic models. We show that the adaptive LASSO selects the relevant variables with probability converging to one and that the estimator is oracle efficient, meaning that its distribution converges to the same distribution of the oracle-assisted least squares, i.e., the least square estimator calculated as if we knew the set of relevant variables beforehand. Finally, we show that the LASSO estimator can be used to construct the initial weights. The performance of the method in finite samples is illustrated using Monte Carlo simulation.  相似文献   

12.
Abstract

Linear regression model and least squares method are widely used in many fields of natural and social sciences. In the presence of collinearity, the least squares estimator is unstable and often gives misleading information. Ridge regression is the most common method to overcome this problem. We find that when there exists severe collinearity, the shrinkage parameter selected by existing methods for ridge regression may not fully address the ill conditioning problem. To solve this problem, we propose a new two-parameter estimator. We show using both theoretic results and simulation that our new estimator has two advantages over ridge regression. First, our estimator has less mean squared error (MSE). Second, our estimator can fully address the ill conditioning problem. A numerical example from literature is used to illustrate the results.  相似文献   

13.
We propose a robust estimator in the errors-in-variables model using the least trimmed squares estimator. We call this estimator the orthogonal least trimmed squares (OLTS) estimator. We show that the OLTS estimator has the high breakdown point and appropriate equivariance properties. We develop an algorithm for the OLTS estimate. Simulations are performed to compare the efficiencies of the OLTS estimates with the total least squares (TLS) estimates and a numerical example is given to illustrate the effectiveness of the estimate.  相似文献   

14.
Penalized least squares estimators are sensitive to the influence of outliers like the ordinary least squares estimator. We propose a sparse regression estimator for robust variable selection and estimation based on a robust initial estimator. It is proven that our estimator has at least the same breakdown value as the initial estimator. Numerical examples are presented to illustrate our method.  相似文献   

15.
ABSTRACT

In this paper, assuming that there exist omitted variables in the specified model, we analytically derive the exact formula for the mean squared error (MSE) of a heterogeneous pre-test (HPT) estimator whose components are the ordinary least squares (OLS) and feasible ridge regression (FRR) estimators. Since we cannot examine the MSE performance analytically, we execute numerical evaluations to investigate small sample properties of the HPT estimator, and compare the MSE performance of the HPT estimator with those of the FRR estimator and the usual OLS estimator. Our numerical results show that (1) the HPT estimator is more efficient when the model misspecification is severe; (2) the HPT estimator with the optimal critical value obtained under the correctly specified model can be safely used even when there exist omitted variables in the specified model.  相似文献   

16.
Under some nonstochastic linear restrictions based on either additional information or prior knowledge in a semiparametric regression model, a family of feasible generalized robust estimators for the regression parameter is proposed. The least trimmed squares (LTS) method proposed by Rousseeuw as a highly robust regression estimator is a statistical technique for fitting a regression model based on the subset of h observations (out of n) whose least-square fit possesses the smallest sum of squared residuals. The coverage h may be set between n/2 and n. The LTS estimator involves computing the hyperplane that minimizes the sum of the smallest h squared residuals. For practical purpose, it is assumed that the covariance matrix of the error term is unknown and thus feasible estimators are replaced. Then, we develop an algorithm for the LTS estimator based on feasible methods. Through the Monte Carlo simulation studies and a real data example, performance of the feasible type of robust estimators is compared with the classical ones in restricted semiparametric regression models.  相似文献   

17.
ABSTRACT

In this article, further properties of the Riesz-Bessel distribution are provided. These properties allow for the simulation of random variables from the Riesz-Bessel distribution. Estimation is addressed by nonlinear generalized least squares regression on the empirical characteristic function. The estimator is seen to approximate the maximum likelihood estimator. The distribution is illustrated with financial data.  相似文献   

18.
In this note we consider the equality of the ordinary least squares estimator (OLSE) and the best linear unbiased estimator (BLUE) of the estimable parametric function in the general Gauss–Markov model. Especially we consider the structures of the covariance matrix V for which the OLSE equals the BLUE. Our results are based on the properties of a particular reparametrized version of the original Gauss–Markov model.   相似文献   

19.
It is well known that when the true values of the independent variable are unobservable due to measurement error, the least squares estimator for a regression model is biased and inconsistent. When repeated observations on each xi are taken, consistent estimators for the linear-plateau model can be formed. The repeated observations are required to classify each observation to the appropriate line segment. Two cases of repeated observations are treated in detail. First, when a single value of yi is observed with the repeated observations of xi the least squares estimator using the mean of the repeated xi observations is consistent and asymptotically normal. Second, when repeated observations on the pair (xi, yi ) are taken the least squares estimator is inconsistent, but two consistent estimators are proposed: one that consistently estimates the bias of the least squares estimator and adjusts accordingly; the second is the least squares estimator using the mean of the repeated observations on each pair.  相似文献   

20.
The first-order integer-valued autoregressive (INAR(1)) process with Poisson marginal distributions is considered. It is shown that the sample autocovariance function of the model is asymptotically normally distributed. We derive asymptotic distribution of Yule-Walker type estimators of parameters. It turns out that our Yule-Walker type estimators are better than the conditional least squares estimators proposed by Klimko and Nelson (1978) and Al-Osh and Alzaid (1987). also, we study the relationship between the model andM/M/∞ queueing system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号