共查询到20条相似文献,搜索用时 13 毫秒
1.
Abstract. Suppose the random vector (X,Y) satisfies the regression model Y = m(X) + σ (X) ? , where m (?) and σ (?) are unknown location and scale functions and ? is independent of X. The response Y is subject to random right censoring, and the covariate X is completely observed. A new test for a specific parametric form of any scale function σ (?) (including the standard deviation function) is proposed. Its statistic is based on the distribution of the residuals obtained from the assumed regression model. Weak convergence of the corresponding process is obtained, and its finite sample behaviour is studied via simulations. Finally, characteristics of the test are illustrated in the analysis of a fatigue data set. 相似文献
2.
MICHEL DELECROIX OLIVIER LOPEZ VALENTIN PATILEA 《Scandinavian Journal of Statistics》2008,35(2):248-265
Abstract. The problem of estimating a nonlinear regression model, when the dependent variable is randomly censored, is considered. The parameter of the model is estimated by least squares using synthetic data. Consistency and asymptotic normality of the least squares estimators are derived. The proofs are based on a novel approach that uses i.i.d. representations of synthetic data through Kaplan–Meier integrals. The asymptotic results are supported by a small simulation study. 相似文献
3.
Non-parametric Regression with Dependent Censored Data 总被引:1,自引:0,他引:1
Abstract. Let ( X i , Y i ) ( i = 1 ,…, n ) be n replications of a random vector ( X , Y ), where Y is supposed to be subject to random right censoring. The data ( X i , Y i ) are assumed to come from a stationary α -mixing process. We consider the problem of estimating the function m ( x ) = E ( φ ( Y ) | X = x ), for some known transformation φ . This problem is approached in the following way: first, we introduce a transformed variable , that is not subject to censoring and satisfies the relation , and then we estimate m ( x ) by applying local linear regression techniques. As a by-product, we obtain a general result on the uniform rate of convergence of kernel type estimators of functionals of an unknown distribution function, under strong mixing assumptions. 相似文献
4.
Ingrid K. Glad 《Scandinavian Journal of Statistics》1998,25(4):649-668
We present a new approach to regression function estimation in which a non-parametric regression estimator is guided by a parametric pilot estimate with the aim of reducing the bias. New classes of parametrically guided kernel weighted local polynomial estimators are introduced and formulae for asymptotic expectation and variance, hence approximated mean squared error and mean integrated squared error, are derived. It is shown that the new classes of estimators have the very same large sample variance as the estimators in the standard non-parametric setting, while there is substantial room for reducing the bias if the chosen parametric pilot function belongs to a wide neighbourhood around the true regression line. Bias reduction is discussed in light of examples and simulations. 相似文献
5.
HOHSUK NOH ANOUAR EL GHOUCH INGRID VAN KEILEGOM 《Scandinavian Journal of Statistics》2013,40(1):105-118
Abstract. In regression experiments, to learn about the strength of the relationship between a covariate vector and a dependent variable, we propose a ‘coefficient of determination’ based on the quantiles. Such a coefficient is a ‘local’ measure in the sense that the strength is measured at a prespecified quantile level. Once estimated, it can be used, for example, to measure the relative importance of a subset of covariates in the quantile regression context. Related to this coefficient, we also propose a new ‘local’ lack‐of‐fit measure of a given parametric model. We provide some asymptotic results of the proposed measures and carry out a Monte Carlo simulation study to illustrate their use and performance in practice. 相似文献
6.
空间回归模型由于引入了空间地理信息而使得其参数估计变得复杂,因为主要采用最大似然法,致使一般人认为在空间回归模型参数估计中不存在最小二乘法。通过分析空间回归模型的参数估计技术,研究发现,最小二乘法和最大似然法分别用于估计空间回归模型的不同的参数,只有将两者结合起来才能快速有效地完成全部的参数估计。数理论证结果表明,空间回归模型参数最小二乘估计量是最佳线性无偏估计量。空间回归模型的回归参数可以在估计量为正态性的条件下而实施显著性检验,而空间效应参数则不可以用此方法进行检验。 相似文献
7.
The hazard function plays an important role in reliability or survival studies since it describes the instantaneous risk of failure of items at a time point, given that they have not failed before. In some real life applications, abrupt changes in the hazard function are observed due to overhauls, major operations or specific maintenance activities. In such situations it is of interest to detect the location where such a change occurs and estimate the size of the change. In this paper we consider the problem of estimating a single change point in a piecewise constant hazard function when the observed variables are subject to random censoring. We suggest an estimation procedure that is based on certain structural properties and on least squares ideas. A simulation study is carried out to compare the performance of this estimator with two estimators available in the literature: an estimator based on a functional of the Nelson-Aalen estimator and a maximum likelihood estimator. The proposed least squares estimator tums out to be less biased than the other two estimators, but has a larger variance. We illustrate the estimation method on some real data sets. 相似文献
8.
Non-parametric Quantile Regression with Censored Data 总被引:1,自引:0,他引:1
ALI GANNOUN JÉRÔME SARACCO AO YUAN GEORGE E. BONNEY 《Scandinavian Journal of Statistics》2005,32(4):527-550
Abstract. Censored regression models have received a great deal of attention in both the theoretical and applied statistics literature. Here, we consider a model in which the response variable is censored but not the covariates. We propose a new estimator of the conditional quantiles based on the local linear method, and give an algorithm for its numerical implementation. We study its asymptotic properties and evaluate its performance on simulated data sets. 相似文献
9.
Yijian Huang 《Scandinavian Journal of Statistics》2013,40(4):789-806
Weighted log‐rank estimating function has become a standard estimation method for the censored linear regression model, or the accelerated failure time model. Well established statistically, the estimator defined as a consistent root has, however, rather poor computational properties because the estimating function is neither continuous nor, in general, monotone. We propose a computationally efficient estimator through an asymptotics‐guided Newton algorithm, in which censored quantile regression methods are tailored to yield an initial consistent estimate and a consistent derivative estimate of the limiting estimating function. We also develop fast interval estimation with a new proposal for sandwich variance estimation. The proposed estimator is asymptotically equivalent to the consistent root estimator and barely distinguishable in samples of practical size. However, computation time is typically reduced by two to three orders of magnitude for point estimation alone. Illustrations with clinical applications are provided. 相似文献
10.
针对自变量和因变量皆模糊的数据系统中的回归分析问题,为避免自变量退化成数值变量时可能引致的估计误差增大而带来的问题,提出系统中引入模糊调整项的回归模型的一般结构,并运用基于模糊数间完备距离的最小二乘法研究模型解析表达式;利用水平截集概念将模糊多元回归模型转化成两个传统回归模型,根据模糊数间距离采用最小二乘法得到参数估计,给出员工工作绩效评估的算例说明方法的有效性,并结合Bootstrap方法的应用,研究回归参数所具有的随机不确定性动态变化。 相似文献
11.
Let ( X , Y ) be a random vector, where Y denotes the variable of interest possibly subject to random right censoring, and X is a covariate. We construct confidence intervals and bands for the conditional survival and quantile function of Y given X using a non-parametric likelihood ratio approach. This approach was introduced by Thomas & Grunkemeier (1975 ), who estimated confidence intervals of survival probabilities based on right censored data. The method is appealing for several reasons: it always produces intervals inside [0, 1], it does not involve variance estimation, and can produce asymmetric intervals. Asymptotic results for the confidence intervals and bands are obtained, as well as simulation results, in which the performance of the likelihood ratio intervals and bands is compared with that of the normal approximation method. We also propose a bandwidth selection procedure based on the bootstrap and apply the technique on a real data set. 相似文献
12.
Empirical Likelihood for Censored Linear Regression 总被引:5,自引:0,他引:5
In this paper we investigate the empirical likelihood method in a linear regression model when the observations are subject to random censoring. An empirical likelihood ratio for the slope parameter vector is defined and it is shown that its limiting distribution is a weighted sum of independent chi-square distributions. This reduces to the empirical likelihood to the linear regression model first studied by Owen (1991) if there is no censoring present. Some simulation studies are presented to compare the empirical likelihood method with the normal approximation based method proposed in Lai et al. (1995). It was found that the empirical likelihood method performs much better than the normal approximation method. 相似文献
13.
In this article, we propose a new empirical likelihood method for linear regression analysis with a right censored response variable. The method is based on the synthetic data approach for censored linear regression analysis. A log-empirical likelihood ratio test statistic for the entire regression coefficients vector is developed and we show that it converges to a standard chi-squared distribution. The proposed method can also be used to make inferences about linear combinations of the regression coefficients. Moreover, the proposed empirical likelihood ratio provides a way to combine different normal equations derived from various synthetic response variables. Maximizing this empirical likelihood ratio yields a maximum empirical likelihood estimator which is asymptotically equivalent to the solution of the estimating equation that are optimal linear combination of the original normal equations. It improves the estimation efficiency. The method is illustrated by some Monte Carlo simulation studies as well as a real example. 相似文献
14.
Weextend Wei and Tanner's (1991) multiple imputation approach insemi-parametric linear regression for univariate censored datato clustered censored data. The main idea is to iterate the followingtwo steps: 1) using the data augmentation to impute for censoredfailure times; 2) fitting a linear model with imputed completedata, which takes into consideration of clustering among failuretimes. In particular, we propose using the generalized estimatingequations (GEE) or a linear mixed-effects model to implementthe second step. Through simulation studies our proposal comparesfavorably to the independence approach (Lee et al., 1993), whichignores the within-cluster correlation in estimating the regressioncoefficient. Our proposal is easy to implement by using existingsoftwares. 相似文献
15.
Ricardo Cao José A. Vilar Juan M. Vilar 《Australian & New Zealand Journal of Statistics》2012,54(3):301-324
Generalised variance function (GVF) models are data analysis techniques often used in large‐scale sample surveys to approximate the design variance of point estimators for population means and proportions. Some potential advantages of the GVF approach include operational simplicity, more stable sampling errors estimates and providing a convenient method of summarising results when a high number of survey variables is considered. In this paper, several parametric and nonparametric methods for GVF estimation with binary variables are proposed and compared. The behavior of these estimators is analysed under heteroscedasticity and in the presence of outliers and influential observations. An empirical study based on the annual survey of living conditions in Galicia (a region in the northwest of Spain) illustrates the behaviour of the proposed estimators. 相似文献
16.
Single‐index models provide one way of reducing the dimension in regression analysis. The statistical literature has focused mainly on estimating the index coefficients, the mean function, and their asymptotic properties. For accurate statistical inference it is equally important to estimate the error variance of these models. We examine two estimators of the error variance in a single‐index model and compare them with a few competing estimators with respect to their corresponding asymptotic properties. Using a simulation study, we evaluate the finite‐sample performance of our estimators against their competitors. 相似文献
17.
In this article we study the method of nonparametric regression based on a transformation model, under which an unknown transformation of the survival time is nonlinearly, even more, nonparametrically, related to the covariates with various error distributions, which are parametrically specified with unknown parameters. Local linear approximations and locally weighted least squares are applied to obtain estimators for the effects of covariates with censored observations. We show that the estimators are consistent and asymptotically normal. This transformation model, coupled with local linear approximation techniques, provides many alternatives to the more general proportional hazards models with nonparametric covariates. 相似文献
18.
JUAN CARLOS PARDO-FERNÁNDEZ INGRID VAN KEILEGOM 《Scandinavian Journal of Statistics》2006,33(3):409-434
Abstract. In this article, we introduce a procedure to test the equality of regression functions when the response variables are censored. The test is based on a comparison of Kaplan–Meier estimators of the distribution of the censored residuals. Kolmogorov–Smirnov- and Cramér–von Mises-type statistics are considered. Some asymptotic results are proved: weak convergence of the process of interest, convergence of the test statistics and behaviour of the process under local alternatives. We also describe a bootstrap procedure in order to approximate the critical values of the test. A simulation study and an application to a real data set conclude the paper. 相似文献
19.
Rolf Sundberg 《Scandinavian Journal of Statistics》1999,26(2):161-207
This paper tries first to introduce and motivate the methodology of multivariate calibration. Next a review is given, mostly avoiding technicalities, of the somewhat messy theory of the subject. Two approaches are distinguished: the estimation approach (controlled calibration) and the prediction approach (natural calibration). Among problems discussed are the choice of estimator, the choice of confidence region, methodology for handling situations with more variables than observations, near-collinearities (with counter-measures like ridge type regression, principal components regression, partial least squares regression and continuum regression), pretreatment of data, and cross-validation vs true prediction. Examples discussed in detail concern estimation of the age of a rhinoceros from its horn lengths (low-dimensional), and nitrate prediction in waste-water from high-dimensional spectroscopic measurements. 相似文献
20.
The linear regression model for right censored data, also known as the accelerated failure time model using the logarithm of survival time as the response variable, is a useful alternative to the Cox proportional hazards model. Empirical likelihood as a non‐parametric approach has been demonstrated to have many desirable merits thanks to its robustness against model misspecification. However, the linear regression model with right censored data cannot directly benefit from the empirical likelihood for inferences mainly because of dependent elements in estimating equations of the conventional approach. In this paper, we propose an empirical likelihood approach with a new estimating equation for linear regression with right censored data. A nested coordinate algorithm with majorization is used for solving the optimization problems with non‐differentiable objective function. We show that the Wilks' theorem holds for the new empirical likelihood. We also consider the variable selection problem with empirical likelihood when the number of predictors can be large. Because the new estimating equation is non‐differentiable, a quadratic approximation is applied to study the asymptotic properties of penalized empirical likelihood. We prove the oracle properties and evaluate the properties with simulated data. We apply our method to a Surveillance, Epidemiology, and End Results small intestine cancer dataset. 相似文献