首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Covariate informed product partition models incorporate the intuitively appealing notion that individuals or units with similar covariate values a priori have a higher probability of co-clustering than those with dissimilar covariate values. These methods have been shown to perform well if the number of covariates is relatively small. However, as the number of covariates increase, their influence on partition probabilities overwhelm any information the response may provide in clustering and often encourage partitions with either a large number of singleton clusters or one large cluster resulting in poor model fit and poor out-of-sample prediction. This same phenomenon is observed in Bayesian nonparametric regression methods that induce a conditional distribution for the response given covariates through a joint model. In light of this, we propose two methods that calibrate the covariate-dependent partition model by capping the influence that covariates have on partition probabilities. We demonstrate the new methods’ utility using simulation and two publicly available datasets.  相似文献   

2.
Investigators often gather longitudinal data to assess changes in responses over time within subjects and to relate these changes to within‐subject changes in predictors. Missing data are common in such studies and predictors can be correlated with subject‐specific effects. Maximum likelihood methods for generalized linear mixed models provide consistent estimates when the data are ‘missing at random’ (MAR) but can produce inconsistent estimates in settings where the random effects are correlated with one of the predictors. On the other hand, conditional maximum likelihood methods (and closely related maximum likelihood methods that partition covariates into between‐ and within‐cluster components) provide consistent estimation when random effects are correlated with predictors but can produce inconsistent covariate effect estimates when data are MAR. Using theory, simulation studies, and fits to example data this paper shows that decomposition methods using complete covariate information produce consistent estimates. In some practical cases these methods, that ostensibly require complete covariate information, actually only involve the observed covariates. These results offer an easy‐to‐use approach to simultaneously protect against bias from both cluster‐level confounding and MAR missingness in assessments of change.  相似文献   

3.
This paper deals with a longitudinal semi‐parametric regression model in a generalised linear model setup for repeated count data collected from a large number of independent individuals. To accommodate the longitudinal correlations, we consider a dynamic model for repeated counts which has decaying auto‐correlations as the time lag increases between the repeated responses. The semi‐parametric regression function involved in the model contains a specified regression function in some suitable time‐dependent covariates and a non‐parametric function in some other time‐dependent covariates. As far as the inference is concerned, because the non‐parametric function is of secondary interest, we estimate this function consistently using the independence assumption‐based well‐known quasi‐likelihood approach. Next, the proposed longitudinal correlation structure and the estimate of the non‐parametric function are used to develop a semi‐parametric generalised quasi‐likelihood approach for consistent and efficient estimation of the regression effects in the parametric regression function. The finite sample performance of the proposed estimation approach is examined through an intensive simulation study based on both large and small samples. Both balanced and unbalanced cluster sizes are incorporated in the simulation study. The asymptotic performances of the estimators are given. The estimation methodology is illustrated by reanalysing the well‐known health care utilisation data consisting of counts of yearly visits to a physician by 180 individuals for four years and several important primary and secondary covariates.  相似文献   

4.
Variable selection over a potentially large set of covariates in a linear model is quite popular. In the Bayesian context, common prior choices can lead to a posterior expectation of the regression coefficients that is a sparse (or nearly sparse) vector with a few nonzero components, those covariates that are most important. This article extends the “global‐local” shrinkage idea to a scenario where one wishes to model multiple response variables simultaneously. Here, we have developed a variable selection method for a K‐outcome model (multivariate regression) that identifies the most important covariates across all outcomes. The prior for all regression coefficients is a mean zero normal with coefficient‐specific variance term that consists of a predictor‐specific factor (shared local shrinkage parameter) and a model‐specific factor (global shrinkage term) that differs in each model. The performance of our modeling approach is evaluated through simulation studies and a data example.  相似文献   

5.
Among the diverse frameworks that have been proposed for regression analysis of angular data, the projected multivariate linear model provides a particularly appealing and tractable methodology. In this model, the observed directional responses are assumed to correspond to the angles formed by latent bivariate normal random vectors that are assumed to depend upon covariates through a linear model. This implies an angular normal distribution for the observed angles, and incorporates a regression structure through a familiar and convenient relationship. In this paper we extend this methodology to accommodate clustered data (e.g., longitudinal or repeated measures data) by formulating a marginal version of the model and basing estimation on an EM‐like algorithm in which correlation among within‐cluster responses is taken into account by incorporating a working correlation matrix into the M step. A sandwich estimator is used for the parameter estimates’ covariance matrix. The methodology is motivated and illustrated using an example involving clustered measurements of microbril angle on loblolly pine (Pinus taeda L.) Simulation studies are presented that evaluate the finite sample properties of the proposed fitting method. In addition, the relationship between within‐cluster correlation on the latent Euclidean vectors and the corresponding correlation structure for the observed angles is explored.  相似文献   

6.
In this contribution we aim at improving ordinal variable selection in the context of causal models for credit risk estimation. In this regard, we propose an approach that provides a formal inferential tool to compare the explanatory power of each covariate and, therefore, to select an effective model for classification purposes. Our proposed model is Bayesian nonparametric thus keeps the amount of model specification to a minimum. We consider the case in which information from the covariates is at the ordinal level. A noticeable instance of this regards the situation in which ordinal variables result from rankings of companies that are to be evaluated according to different macro and micro economic aspects, leading to ordinal covariates that correspond to various ratings, that entail different magnitudes of the probability of default. For each given covariate, we suggest to partition the statistical units in as many groups as the number of observed levels of the covariate. We then assume individual defaults to be homogeneous within each group and heterogeneous across groups. Our aim is to compare and, therefore select, the partition structures resulting from the consideration of different explanatory covariates. The metric we choose for variable comparison is the calculation of the posterior probability of each partition. The application of our proposal to a European credit risk database shows that it performs well, leading to a coherent and clear method for variable averaging of the estimated default probabilities.  相似文献   

7.
In this paper, we propose a Bayesian partition modeling for lifetime data in the presence of a cure fraction by considering a local structure generated by a tessellation which depends on covariates. In this modeling we include information of nominal qualitative variables with more than two categories or ordinal qualitative variables. The proposed modeling is based on a promotion time cure model structure but assuming that the number of competing causes follows a geometric distribution. It is an alternative modeling strategy to the conventional survival regression modeling generally used for modeling lifetime data in the presence of a cure fraction, which models the cure fraction through a (generalized) linear model of the covariates. An advantage of our approach is its ability to capture the effects of covariates in a local structure. The flexibility of having a local structure is crucial to capture local effects and features of the data. The modeling is illustrated on two real melanoma data sets.  相似文献   

8.
The authors define a class of “partially linear single‐index” survival models that are more flexible than the classical proportional hazards regression models in their treatment of covariates. The latter enter the proposed model either via a parametric linear form or a nonparametric single‐index form. It is then possible to model both linear and functional effects of covariates on the logarithm of the hazard function and if necessary, to reduce the dimensionality of multiple covariates via the single‐index component. The partially linear hazards model and the single‐index hazards model are special cases of the proposed model. The authors develop a likelihood‐based inference to estimate the model components via an iterative algorithm. They establish an asymptotic distribution theory for the proposed estimators, examine their finite‐sample behaviour through simulation, and use a set of real data to illustrate their approach.  相似文献   

9.
Many recent applications of nonparametric Bayesian inference use random partition models, i.e. probability models for clustering a set of experimental units. We review the popular basic constructions. We then focus on an interesting extension of such models. In many applications covariates are available that could be used to a priori inform the clustering. This leads to random clustering models indexed by covariates, i.e., regression models with the outcome being a partition of the experimental units. We discuss some alternative approaches that have been used in the recent literature to implement such models, with an emphasis on a recently proposed extension of product partition models. Several of the reviewed approaches were not originally intended as covariate-based random partition models, but can be used for such inference.  相似文献   

10.
Social network data represent the interactions between a group of social actors. Interactions between colleagues and friendship networks are typical examples of such data.The latent space model for social network data locates each actor in a network in a latent (social) space and models the probability of an interaction between two actors as a function of their locations. The latent position cluster model extends the latent space model to deal with network data in which clusters of actors exist — actor locations are drawn from a finite mixture model, each component of which represents a cluster of actors.A mixture of experts model builds on the structure of a mixture model by taking account of both observations and associated covariates when modeling a heterogeneous population. Herein, a mixture of experts extension of the latent position cluster model is developed. The mixture of experts framework allows covariates to enter the latent position cluster model in a number of ways, yielding different model interpretations.Estimates of the model parameters are derived in a Bayesian framework using a Markov Chain Monte Carlo algorithm. The algorithm is generally computationally expensive — surrogate proposal distributions which shadow the target distributions are derived, reducing the computational burden.The methodology is demonstrated through an illustrative example detailing relationships between a group of lawyers in the USA.  相似文献   

11.
The Cox‐Aalen model, obtained by replacing the baseline hazard function in the well‐known Cox model with a covariate‐dependent Aalen model, allows for both fixed and dynamic covariate effects. In this paper, we examine maximum likelihood estimation for a Cox‐Aalen model based on interval‐censored failure times with fixed covariates. The resulting estimator globally converges to the truth slower than the parametric rate, but its finite‐dimensional component is asymptotically efficient. Numerical studies show that estimation via a constrained Newton method performs well in terms of both finite sample properties and processing time for moderate‐to‐large samples with few covariates. We conclude with an application of the proposed methods to assess risk factors for disease progression in psoriatic arthritis.  相似文献   

12.
In randomized clinical trials with time‐to‐event outcomes, the hazard ratio is commonly used to quantify the treatment effect relative to a control. The Cox regression model is commonly used to adjust for relevant covariates to obtain more accurate estimates of the hazard ratio between treatment groups. However, it is well known that the treatment hazard ratio based on a covariate‐adjusted Cox regression model is conditional on the specific covariates and differs from the unconditional hazard ratio that is an average across the population. Therefore, covariate‐adjusted Cox models cannot be used when the unconditional inference is desired. In addition, the covariate‐adjusted Cox model requires the relatively strong assumption of proportional hazards for each covariate. To overcome these challenges, a nonparametric randomization‐based analysis of covariance method was proposed to estimate the covariate‐adjusted hazard ratios for multivariate time‐to‐event outcomes. However, empirical evaluations of the performance (power and type I error rate) of the method have not been studied. Although the method is derived for multivariate situations, for most registration trials, the primary endpoint is a univariate outcome. Therefore, this approach is applied to univariate outcomes, and performance is evaluated through a simulation study in this paper. Stratified analysis is also investigated. As an illustration of the method, we also apply the covariate‐adjusted and unadjusted analyses to an oncology trial. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Clusterwise regression aims to cluster data sets where the clusters are characterized by their specific regression coefficients in a linear regression model. In this paper, we propose a method for determining a partition which uses an idea of robust regression. We start with some random weighting to determine a start partition and continue in the spirit of M-estimators. The residuals for all regressions are used to assign the observations to the different groups. As target function we use the determination coefficient R2wR^{2}_{w} for the overall model. This coefficient is suitably defined for weighted regression.  相似文献   

14.
Two different forms of Akaike's information criterion (AIC) are compared for selecting the smooth terms in penalized spline additive mixed models. The conditional AIC (cAIC) has been used traditionally as a criterion for both estimating penalty parameters and selecting covariates in smoothing, and is based on the conditional likelihood given the smooth mean and on the effective degrees of freedom for a model fit. By comparison, the marginal AIC (mAIC) is based on the marginal likelihood from the mixed‐model formulation of penalized splines which has recently become popular for estimating smoothing parameters. To the best of the authors' knowledge, the use of mAIC for selecting covariates for smoothing in additive models is new. In the competing models considered for selection, covariates may have a nonlinear effect on the response, with the possibility of group‐specific curves. Simulations are used to compare the performance of cAIC and mAIC in model selection settings that have correlated and hierarchical smooth terms. In moderately large samples, both formulations of AIC perform extremely well at detecting the function that generated the data. The mAIC does better for simple functions, whereas the cAIC is more sensitive to detecting a true model that has complex and hierarchical terms.  相似文献   

15.
Baseline adjustment is an important consideration in thorough QT studies for non‐antiarrhythmic drugs. For crossover studies with period‐specific pre‐dose baselines, we propose a by‐time‐point analysis of covariance model with change from pre‐dose baseline as response, treatment as a fixed effect, pre‐dose baseline for current treatment and pre‐dose baseline averaged across treatments as covariates, and subject as a random effect. Additional factors such as period and sex should be included in the model as appropriate. Multiple pre‐dose measurements can be averaged to obtain a pre‐dose‐averaged baseline and used in the model. We provide conditions under which the proposed model is more efficient than other models. We demonstrate the efficiency and robustness of the proposed model both analytically and through simulation studies. The advantage of the proposed model is also illustrated using the data from a real clinical trial. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Motivated by a recent tuberculosis (TB) study, this paper is concerned with covariates missing not at random (MNAR) and models the potential intracluster correlation by a frailty. We consider the regression analysis of right‐censored event times from clustered subjects under a Cox proportional hazards frailty model and present the semiparametric maximum likelihood estimator (SPMLE) of the model parameters. An easy‐to‐implement pseudo‐SPMLE is then proposed to accommodate more realistic situations using readily available supplementary information on the missing covariates. Algorithms are provided to compute the estimators and their consistent variance estimators. We demonstrate that both the SPMLE and the pseudo‐SPMLE are consistent and asymptotically normal by the arguments based on the theory of modern empirical processes. The proposed approach is examined numerically via simulation and illustrated with an analysis of the motivating TB study data.  相似文献   

17.
We consider Bayesian testing for independence of two categorical variables with covariates for a two-stage cluster sample. This is a difficult problem because we have a complex sample (i.e. cluster sample), not a simple random sample. Our approach is to convert the cluster sample with covariates into an equivalent simple random sample without covariates, which provides a surrogate of the original sample. Then, this surrogate sample is used to compute the Bayes factor to make an inference about independence. We apply our methodology to the data from the Trend in International Mathematics and Science Study [30] for fourth grade US students to assess the association between the mathematics and science scores represented as categorical variables. We show that if there is strong association between two categorical variables, there is no significant difference between the tests with and without the covariates. We also performed a simulation study to further understand the effect of covariates in various situations. We found that for borderline cases (moderate association between the two categorical variables), there are noticeable differences in the test with and without covariates.  相似文献   

18.
Baseline adjustment is an important consideration in thorough QT studies for nonantiarrhythmic drugs. For crossover studies with period‐specific baseline days, we propose an analysis of covariance model with change from time‐matched baseline as response, time‐matched baseline for the current treatment, day‐averaged baseline for the current treatment, time‐matched baseline averaged across treatments, and day‐averaged baseline averaged across treatments as covariates. This model adjusts for within‐subject diurnal effects for each treatment and is more efficient than commonly used models for treatment comparisons. We illustrate the benefit using real clinical trial data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
We consider an extension of the recursive bivariate probit model for estimating the effect of a binary variable on a binary outcome in the presence of unobserved confounders, nonlinear covariate effects and overdispersion. Specifically, the model consists of a system of two binary outcomes with a binary endogenous regressor which includes smooth functions of covariates, hence allowing for flexible functional dependence of the responses on the continuous regressors, and arbitrary random intercepts to deal with overdispersion arising from correlated observations on clusters or from the omission of non‐confounding covariates. We fit the model by maximizing a penalized likelihood using an Expectation‐Maximisation algorithm. The issues of automatic multiple smoothing parameter selection and inference are also addressed. The empirical properties of the proposed algorithm are examined in a simulation study. The method is then illustrated using data from a survey on health, aging and wealth.  相似文献   

20.
The authors propose the use of self‐modelling regression to analyze longitudinal data with time invariant covariates. They model the population time curve with a penalized regression spline and use a linear mixed model for transformation of the time and response scales to fit the individual curves. Fitting is done by an iterative algorithm using off‐the‐shelf linear and nonlinear mixed model software. Their method is demonstrated in a simulation study and in the analysis of tree swallow nestling growth from an experiment that includes an experimentally controlled treatment, an observational covariate and multi‐level sampling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号