首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When two‐component parallel systems are tested, the data consist of Type‐II censored data X(i), i= 1, n, from one component, and their concomitants Y [i] randomly censored at X(r), the stopping time of the experiment. Marshall & Olkin's (1967) bivariate exponential distribution is used to illustrate statistical inference procedures developed for this data type. Although this data type is motivated practically, the likelihood is complicated, and maximum likelihood estimation is difficult, especially in the case where the parameter space is a non‐open set. An iterative algorithm is proposed for finding maximum likelihood estimates. This article derives several properties of the maximum likelihood estimator (MLE) including existence, uniqueness, strong consistency and asymptotic distribution. It also develops an alternative estimation method with closed‐form expressions based on marginal distributions, and derives its asymptotic properties. Compared with variances of the MLEs in the finite and large sample situations, the alternative estimator performs very well, especially when the correlation between X and Y is small.  相似文献   

2.
In this paper, we consider the problem of adaptive density or survival function estimation in an additive model defined by Z=X+Y with X independent of Y, when both random variables are non‐negative. This model is relevant, for instance, in reliability fields where we are interested in the failure time of a certain material that cannot be isolated from the system it belongs. Our goal is to recover the distribution of X (density or survival function) through n observations of Z, assuming that the distribution of Y is known. This issue can be seen as the classical statistical problem of deconvolution that has been tackled in many cases using Fourier‐type approaches. Nonetheless, in the present case, the random variables have the particularity to be supported. Knowing that, we propose a new angle of attack by building a projection estimator with an appropriate Laguerre basis. We present upper bounds on the mean squared integrated risk of our density and survival function estimators. We then describe a non‐parametric data‐driven strategy for selecting a relevant projection space. The procedures are illustrated with simulated data and compared with the performances of a more classical deconvolution setting using a Fourier approach. Our procedure achieves faster convergence rates than Fourier methods for estimating these functions.  相似文献   

3.
In this work, we define a new method of ranked set sampling (RSS) which is suitable when the characteristic (variable) Y of primary interest on the units is jointly distributed with an auxiliary characteristic X on which one can take its measurement on any number of units, so that units having record values on X alone are ranked and retained for making measurement on Y. We name this RSS as concomitant record ranked set sampling (CRRSS). We propose estimators of the parameters associated with the variable Y of primary interest based on observations of the proposed CRRSS which are applicable to a very large class of distributions viz. Morgenstern family of distributions. We illustrate the application of CRRSS and our estimation technique of parameters, when the basic distribution is Morgenstern-type bivariate logistic distribution. A primary data collected by CRRSS method is demonstrated and the obtained data used to illustrate the results developed in this work.  相似文献   

4.
DISTRIBUTIONAL CHARACTERIZATIONS THROUGH SCALING RELATIONS   总被引:2,自引:0,他引:2  
Investigated here are aspects of the relation between the laws of X and Y where X is represented as a randomly scaled version of Y. In the case that the scaling has a beta law, the law of Y is expressed in terms of the law of X. Common continuous distributions are characterized using this beta scaling law, and choosing the distribution function of Y as a weighted version of the distribution function of X, where the weight is a power function. It is shown, without any restriction on the law of the scaling, but using a one‐parameter family of weights which includes the power weights, that characterizations can be expressed in terms of known results for the power weights. Characterizations in the case where the distribution function of Y is a positive power of the distribution function of X are examined in two special cases. Finally, conditions are given for existence of inverses of the length‐bias and stationary‐excess operators.  相似文献   

5.
Maximum likelihood estimation is investigated in the context of linear regression models under partial independence restrictions. These restrictions aim to assume a kind of completeness of a set of predictors Z in the sense that they are sufficient to explain the dependencies between an outcome Y and predictors X: ?(Y|Z, X) = ?(Y|Z), where ?(·|·) stands for the conditional distribution. From a practical point of view, the former model is particularly interesting in a double sampling scheme where Y and Z are measured together on a first sample and Z and X on a second separate sample. In that case, estimation procedures are close to those developed in the study of double‐regression by Engel & Walstra (1991) and Causeur & Dhorne (1998) . Properties of the estimators are derived in a small sample framework and in an asymptotic one, and the procedure is illustrated by an example from the food industry context.  相似文献   

6.
The authors consider a finite population ρ = {(Yk, xk), k = 1,…,N} conforming to a linear superpopulation model with unknown heteroscedastic errors, the variances of which are values of a smooth enough function of the auxiliary variable X for their nonparametric estimation. They describe a method of the Chambers‐Dunstan type for estimation of the distribution of {Yk, k = 1,…, N} from a sample drawn from without replacement, and determine the asymptotic distribution of its estimation error. They also consider estimation of its mean squared error in particular cases, evaluating both the analytical estimator derived by “plugging‐in” the asymptotic variance, and a bootstrap approach that is also applicable to estimation of parameters other than mean squared error. These proposed methods are compared with some common competitors in simulation studies.  相似文献   

7.
In survey sampling and in stereology, it is often desirable to estimate the ratio of means θ= E(Y)/E(X) from bivariate count data (X, Y) with unknown joint distribution. We review methods that are available for this problem, with particular reference to stereological applications. We also develop new methods based on explicit statistical models for the data, and associated model diagnostics. The methods are tested on a stereological dataset. For point‐count data, binomial regression and bivariate binomial models are generally adequate. Intercept‐count data are often overdispersed relative to Poisson regression models, but adequately fitted by negative binomial regression.  相似文献   

8.
In this article, we consider the problem of estimation of the stress–strength parameter δ?=?P(Y?<?X) based on progressively first-failure-censored samples, when X and Y both follow two-parameter generalized inverted exponential distribution with different and unknown shape and scale parameters. The maximum likelihood estimator of δ and its asymptotic confidence interval based on observed Fisher information are constructed. Two parametric bootstrap boot-p and boot-t confidence intervals are proposed. We also apply Markov Chain Monte Carlo techniques to carry out Bayes estimation procedures. Bayes estimate under squared error loss function and the HPD credible interval of δ are obtained using informative and non-informative priors. A Monte Carlo simulation study is carried out for comparing the proposed methods of estimation. Finally, the methods developed are illustrated with a couple of real data examples.  相似文献   

9.
If X and Y are gamma distributed independent random variables then it is well known that the ratio X / (X + Y) has the beta distribution. In this note, the distribution of W = X / (X + Y) is considered when X and Y have the compound gamma distribution. We refer to the distribution of W as compound beta and describe an application to consumer price indices to show that compound beta is a better model than one based on the standard beta distribution. We derive various properties of W, including its probability density function, cumulative distribution function, hazard rate function and moments.  相似文献   

10.
In the literature, assuming independence of random variables X and Y, statistical estimation of the stress–strength parameter R = P(X > Y) is intensively investigated. However, in some real applications, the strength variable X could be highly dependent on the stress variable Y. In this paper, unlike the common practice in the literature, we discuss on estimation of the parameter R where more realistically X and Y are dependent random variables distributed as bivariate Rayleigh model. We derive the Bayes estimates and highest posterior density credible intervals of the parameters using suitable priors on the parameters. Because there are not closed forms for the Bayes estimates, we will use an approximation based on Laplace method and a Markov Chain Monte Carlo technique to obtain the Bayes estimate of R and unknown parameters. Finally, simulation studies are conducted in order to evaluate the performances of the proposed estimators and analysis of two data sets are provided.  相似文献   

11.
The hierarchically orthogonal functional decomposition of any measurable function η of a random vector X=(X1,?…?, Xp) consists in decomposing η(X) into a sum of increasing dimension functions depending only on a subvector of X. Even when X1,?…?, Xp are assumed to be dependent, this decomposition is unique if the components are hierarchically orthogonal. That is, two of the components are orthogonal whenever all the variables involved in one of the summands are a subset of the variables involved in the other. Setting Y=η(X), this decomposition leads to the definition of generalized sensitivity indices able to quantify the uncertainty of Y due to each dependent input in X [Chastaing G, Gamboa F, Prieur C. Generalized Hoeffding–Sobol decomposition for dependent variables – application to sensitivity analysis. Electron J Statist. 2012;6:2420–2448]. In this paper, a numerical method is developed to identify the component functions of the decomposition using the hierarchical orthogonality property. Furthermore, the asymptotic properties of the components estimation is studied, as well as the numerical estimation of the generalized sensitivity indices of a toy model. Lastly, the method is applied to a model arising from a real-world problem.  相似文献   

12.
This paper deals with the estimation of R = P(Y < X) when Y and X are two independent but not identically distributed Burr-type X random variables. Maximum likelihood, Bayes and empirical Bayes techniques are used for this purpose. Monte-Carlo simulation is carried out to compare the three methods of estimation. Also, two characterizations of the Burr-type X distribution are presented. The first characterization is based on the recurrence relationships between two successively conditional moments of a certain function of the random variable, whereas the second one is given by the conditional variance of that function.  相似文献   

13.
This paper deals with the estimation of reliability R = P(Y < X) when X is a random strength of a component subjected to a random stress Y, and (X, Y) follows a bivariate Rayleigh distribution. The maximum likelihood estimator of R and its asymptotic distribution are obtained. An asymptotic confidence interval of R is constructed using the asymptotic distribution. Also, two confidence intervals are proposed based on Bootstrap method and a computational approach. Testing of the reliability based on asymptotic distribution of R is discussed. Simulation study to investigate performance of the confidence intervals and tests has been carried out. Also, a numerical example is given to illustrate the proposed approaches.  相似文献   

14.
The nonparametric density function estimation using sample observations which are contaminated with random noise is studied. The particular form of contamination under consideration is Y = X + Z, where Y is an observable random variableZ is a random noise variable with known distribution, and X is an absolutely continuous random variable which cannot be observed directly. The finite sample size performance of a strongly consistent estimator for the density function of the random variable X is illustrated for different distributions. The estimator uses Fourier and kernel function estimation techniques and allows the user to choose constants which relate to bandwidth windows and limits on integration and which greatly affect the appearance and properties of the estimates. Numerical techniques for computation of the estimated densities and for optimal selection of the constant are given.  相似文献   

15.
Abstarct. This paper is concerned with studying the dependence structure between two random variables Y 1 and Y 2 conditionally upon a covariate X. The dependence structure is modelled via a copula function, which depends on the given value of the covariate in a general way. Gijbels et al. (Comput. Statist. Data Anal., 55, 2011, 1919) suggested two non‐parametric estimators of the ‘conditional’ copula and investigated their numerical performances. In this paper we establish the asymptotic properties of the proposed estimators as well as conditional association measures derived from them. Practical recommendations for their use are then discussed.  相似文献   

16.
We consider the problem of minimum variance unbiased estimation of a U-estimable function of two unknown truncation parameters based on independent random samples from two one-truncation parameter families. In particular, we obtain the UMVU estimator of the probability that Y > X.  相似文献   

17.
This article considers the estimation of R = P(Y < X) when X and Y are distributed as two independent three-parameter generalized exponential (GE) random variables with different shape parameters but having the same location and scale parameters. A modified maximum likelihood method and a Bayesian technique are used to estimate R on the basis of independent complete samples. The Bayes estimator cannot be obtained in explicit form, and therefore it has been determined using an importance sampling procedure. An analysis of a real life data set is presented for illustrative purposes.  相似文献   

18.
This paper deals with the estimation of R=P[X<Y] when X and Y come from two independent generalized logistic distributions with different parameters. The maximum-likelihood estimator (MLE) and its asymptotic distribution are proposed. The asymptotic distribution is used to construct an asymptotic confidence interval of R. Assuming that the common scale parameter is known, the MLE, uniformly minimum variance unbiased estimator, Bayes estimation and confidence interval of R are obtained. The MLE of R, asymptotic distribution of R in the general case, is also discussed. Monte Carlo simulations are performed to compare the different proposed methods. Analysis of a real data set has also been presented for illustrative purposes.  相似文献   

19.
Let (X, Y) be a bivariate random vector with joint distribution function FX, Y(x, y) = C(F(x), G(y)), where C is a copula and F and G are marginal distributions of X and Y, respectively. Suppose that (Xi, Yi), i = 1, 2, …, n is a random sample from (X, Y) but we are able to observe only the data consisting of those pairs (Xi, Yi) for which Xi ? Yi. We denote such pairs as (X*i, Yi*), i = 1, 2, …, ν, where ν is a random variable. The main problem of interest is to express the distribution function FX, Y(x, y) and marginal distributions F and G with the distribution function of observed random variables X* and Y*. It is shown that if X and Y are exchangeable with marginal distribution function F, then F can be uniquely determined by the distributions of X* and Y*. It is also shown that if X and Y are independent and absolutely continuous, then F and G can be expressed through the distribution functions of X* and Y* and the stress–strength reliability P{X ? Y}. This allows also to estimate P{X ? Y} with the truncated observations (X*i, Yi*). The copula of bivariate random vector (X*, Y*) is also derived.  相似文献   

20.
A simulation comparison is done of Mann–Whitney U test extensions recently proposed for simple cluster samples or for repeated ordinal responses. These are based on two approaches: the permutation approach of Fay and Gennings (four tests, two exact), and Edwardes’ approach (two asymptotic tests, one new). Edwardes’ approach permits confidence interval estimation, unlike the permutation approach. An appropriate parameter for estimation is P(X<Y)−P(X>Y), where X is the rank of a response from group 1 and Y is from group 2. The permutation tests are shown to be unsuitable for some survey data, since they are sensitive to a difference in cluster intra-correlations when there is no distribution difference between groups at the individual level. The exact permutation tests are of little use for less than seven clusters, precisely where they are most needed. Otherwise, the permutation tests perform well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号