首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let (X i , Y i ), i = 1, 2,…, n be independent and identically distributed random variables from some continuous bivariate distribution. If X (r) denotes the rth-order statistic, then the Y's associated with X (r) denoted by Y [r] is called the concomitant of the rth-order statistic. In this article, we derive an analytical expression of Shannon entropy for concomitants of order statistics in FGM family. Applying this expression for some well-known distributions of this family, we obtain the exact form of Shannon entropy, some of the information properties, and entropy bounds for concomitants of order statistics. Some comparisons are also made between the entropy of order statistics X (r) and the entropy of its concomitants Y [r]. In this family, we show that the mutual information between X (r) and Y [r], and Kullback–Leibler distance among the concomitants of order statistics are all distribution-free. Also, we compare the Pearson correlation coefficient between X (r) and Y [r] with the mutual information of (X (r), Y [r]) for the copula model of FGM family.  相似文献   

2.
The supremum of random variables representing a sequence of rewards is of interest in establishing the existence of optimal stopping rules. Necessary and sufficient conditions are given for existence of moments of supn(Xn ? cn) and supn(Sn ? cn) where X1, X2, … are i.i.d. random variables, Sn = X1 + … + Xn, and cn = (nL(n))1/r, 0 < r < 2, L = 1, L = log, and L = log log. Following Cohn (1974), “rates of convergence” results are used in the proof.  相似文献   

3.
Let (X, Y) be a bivariate random vector with joint distribution function FX, Y(x, y) = C(F(x), G(y)), where C is a copula and F and G are marginal distributions of X and Y, respectively. Suppose that (Xi, Yi), i = 1, 2, …, n is a random sample from (X, Y) but we are able to observe only the data consisting of those pairs (Xi, Yi) for which Xi ? Yi. We denote such pairs as (X*i, Yi*), i = 1, 2, …, ν, where ν is a random variable. The main problem of interest is to express the distribution function FX, Y(x, y) and marginal distributions F and G with the distribution function of observed random variables X* and Y*. It is shown that if X and Y are exchangeable with marginal distribution function F, then F can be uniquely determined by the distributions of X* and Y*. It is also shown that if X and Y are independent and absolutely continuous, then F and G can be expressed through the distribution functions of X* and Y* and the stress–strength reliability P{X ? Y}. This allows also to estimate P{X ? Y} with the truncated observations (X*i, Yi*). The copula of bivariate random vector (X*, Y*) is also derived.  相似文献   

4.
In this paper, by considering a (3n+1) -dimensional random vector (X0, XT, YT, ZT)T having a multivariate elliptical distribution, we derive the exact joint distribution of (X0, aTX(n), bTY[n], cTZ[n])T, where a, b, c∈?n, X(n)=(X(1), …, X(n))T, X(1)<···<X(n), is the vector of order statistics arising from X, and Y[n]=(Y[1], …, Y[n])T and Z[n]=(Z[1], …, Z[n])T denote the vectors of concomitants corresponding to X(n) ((Y[r], Z[r])T, for r=1, …, n, is the vector of bivariate concomitants corresponding to X(r)). We then present an alternate approach for the derivation of the exact joint distribution of (X0, X(r), Y[r], Z[r])T, for r=1, …, n. We show that these joint distributions can be expressed as mixtures of four-variate unified skew-elliptical distributions and these mixture forms facilitate the prediction of X(r), say, based on the concomitants Y[r] and Z[r]. Finally, we illustrate the usefulness of our results by a real data.  相似文献   

5.
Let Xi be i.i.d. random variables with finite expectations, and θi arbitrary constants, i=1,…,n. Yi=Xii. The expected range of the Y's is Rn1,…,θn)=E(maxYi-minYi. It is shown that the expected range is minimized if and only if θ1=?=θn. In the case where the Xi are independently and symmetrically distributed around the same constant, but not identically distributed, it is shown that θ1=?=θn are not necessarily the only (θ1,...,θn) minimizing Rn. Some lemmas which are applicable to more general problems of minimizing Rn are also given.  相似文献   

6.
Let X1,…,Xr?1,Xr,Xr+1,…,Xn be independent, continuous random variables such that Xi, i = 1,…,r, has distribution function F(x), and Xi, i = r+1,…,n, has distribution function F(x?Δ), with -∞ <Δ< ∞. When the integer r is unknown, this is refered to as a change point problem with at most one change. The unknown parameter Δ represents the magnitude of the change and r is called the changepoint. In this paper we present a general review discussion of several nonparametric approaches for making inferences about r and Δ.  相似文献   

7.
Let X1, X2…,Xn be a random sample from [ILM0001] and let Y1, …,Yn be a random sample from [ILM0002]. Then instead of observing a complete sample X1,…Xn, we can only observe the pairs Zi. = min(Xi.,Yi) and [ILM0003] In this paper, we consider estimation of survival function [ILM0004] when [ILM0005], where β is an unknown positive real number.

  相似文献   

8.
Let X(1),…,X(n) be the order statistics of n iid distributed random variables. We prove that (X(i)) have a certain Markov property for general distributions and secondly that the order statistics have monotone conditional regression dependence. Both properties are well known in the case of continuous distributions.  相似文献   

9.
In this paper, by considering a 2n-dimensional elliptically contoured random vector (XT,YT)T=(X1,…,Xn,Y1,…,Yn)T, we derive the exact joint distribution of linear combinations of concomitants of order statistics arising from X. Specifically, we establish a mixture representation for the distribution of the rth concomitant order statistic, and also for the joint distribution of the rth order statistic and its concomitant. We show that these distributions are indeed mixtures of multivariate unified skew-elliptical distributions. The two most important special cases of multivariate normal and multivariate t distributions are then discussed in detail. Finally, an application of the established results in an inferential problem is outlined.  相似文献   

10.
11.
ABSTRACT

Let (Xi, Yi), i = 1, …, n be a pair where the first coordinate Xi represents the lifetime of a component, and the second coordinate Yi denotes the utility of the component during its lifetime. Then the random variable Y[r: n] which is known to be the concomitant of the rth order statistic defines the utility of the component which has the rth smallest lifetime. In this paper, we present a dynamic analysis for an n component system under the above-mentioned concomitant setup.  相似文献   

12.
Let X1,., Xn, be i.i.d. random variables with distribution function F, and let Y1,.,.,Yn be i.i.d. with distribution function G. For i = 1, 2,.,., n set δi, = 1 if Xi ≤ Yi, and 0 otherwise, and Xi, = min{Xi, Ki}. A kernel-type density estimate of f, the density function of F w.r.t. Lebesgue measure on the Borel o-field, based on the censored data (δi, Xi), i = 1,.,.,n, is considered. Weak and strong uniform consistency properties over the whole real line are studied. Rates of convergence results are established under higher-order differentiability assumption on f. A procedure for relaxing such assumptions is also proposed.  相似文献   

13.
Suppose (X, Y) has a Downton's bivariate exponential distribution with correlation ρ. For a random sample of size n from (X, Y), let X r:n be the rth X-order statistic and Y [r:n] be its concomitant. We investigate estimators of ρ when all the parameters are unknown and the available data is an incomplete bivariate sample made up of (i) all the Y-values and the ranks of associated X-values, i.e. (i, Y [i:n]), 1≤in, and (ii) a Type II right-censored bivariate sample consisting of (X i:n , Y [i:n]), 1≤ir<n. In both setups, we use simulation to examine the bias and mean square errors of several estimators of ρ and obtain their estimated relative efficiencies. The preferred estimator under (i) is a function of the sample correlation of (Y i:n , Y [i:n]) values, and under (ii), a method of moments estimator involving the regression function is preferred.  相似文献   

14.
Let (Xi, Yi), i = 1, 2,…, n, be n independent observations from a bivariate population and let X(n) = max Xi and Y(n) = max Yi. This article gives a necessary and sufficient condition for the weak convergence of the distribution function of (X(n), Y(n)) to a nondegenerate distribution.  相似文献   

15.
Let (X, Y) be a bivariate random vector whose distribution function H(x, y) belongs to the class of bivariate extreme-value distributions. If F1 and F2 are the marginals of X and Y, then H(x, y) = C{F1(x),F2(y)}, where C is a bivariate extreme-value dependence function. This paper gives the joint distribution of the random variables Z = {log F1(X)}/{log F1(X)F2(Y)} and W = C{F1{(X),F2(Y)}. Using this distribution, an algorithm to generate random variables having bivariate extreme-value distribution is présentés. Furthermore, it is shown that for any bivariate extreme-value dependence function C, the distribution of the random variable W = C{F1(X),F2(Y)} belongs to a monoparametric family of distributions. This property is used to derive goodness-of-fit statistics to determine whether a copula belongs to an extreme-value family.  相似文献   

16.
Let X1, …, Xn be independent random variables with XiEWG(α, β, λi, pi), i = 1, …, n, and Y1, …, Yn be another set of independent random variables with YiEWG(α, β, γi, qi), i = 1, …, n. The results established here are developed in two directions. First, under conditions p1 = ??? = pn = q1 = ??? = qn = p, and based on the majorization and p-larger orders between the vectors of scale parameters, we establish the usual stochastic and reversed hazard rate orders between the series and parallel systems. Next, for the case λ1 = ??? = λn = γ1 = ??? = γn = λ, we obtain some results concerning the reversed hazard rate and hazard rate orders between series and parallel systems based on the weak submajorization between the vectors of (p1, …, pn) and (q1, …, qn). The results established here can be used to find various bounds for some important aging characteristics of these systems, and moreover extend some well-known results in the literature.  相似文献   

17.
18.
Consider an infinite sequence of independent random variables having common continuous c.d.f. F. For 1 ⩽ in, let Xi:n denote the ith order statistic of the first n random variables, and let {X(n), n ⩾ 1} be the sequence of upper record values. We examine the similarities and differences between the dependence structures of the Xi:n's and the X(n)'s, with an emphasis on the latter. We present an interesting situation involving a characterization of F using the moment sequence of records. We obtain characterizations based on the properties of certain regression functions associated with order statistics, record values, and the original observations. We discuss the resemblance between some known and some new characterizations based on order statistics, record values and those based on the properties of truncated F.  相似文献   

19.
When two‐component parallel systems are tested, the data consist of Type‐II censored data X(i), i= 1, n, from one component, and their concomitants Y [i] randomly censored at X(r), the stopping time of the experiment. Marshall & Olkin's (1967) bivariate exponential distribution is used to illustrate statistical inference procedures developed for this data type. Although this data type is motivated practically, the likelihood is complicated, and maximum likelihood estimation is difficult, especially in the case where the parameter space is a non‐open set. An iterative algorithm is proposed for finding maximum likelihood estimates. This article derives several properties of the maximum likelihood estimator (MLE) including existence, uniqueness, strong consistency and asymptotic distribution. It also develops an alternative estimation method with closed‐form expressions based on marginal distributions, and derives its asymptotic properties. Compared with variances of the MLEs in the finite and large sample situations, the alternative estimator performs very well, especially when the correlation between X and Y is small.  相似文献   

20.
Let Sn = X1 + … + Xn, where X1,…, Xn are independent Bernoulli random variables. In this paper, we evaluate probability metrics of the Wasserstein type between the distribution of Sn and a Poisson distribution. Our results show that, if E(Sn) = O(1) and if the individual probabilities of success of the Xi's tend uniformly to zero, then the general rate of convergence of the above mentioned metrics to zero is O(∑ni = 1P2i). We also show that this rate is sharp and discuss applications of these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号