首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
《Econometric Reviews》2007,26(2):187-192
The paper that An and Schorfheide have written is an excellent piece of work and will become a useful reference for teaching and consultation purposes. The paper discusses in an articulate and convincing manner almost everything that one could think of covering in such a review. This makes the task of the commentator difficult. Nevertheless, I will attempt to add few insights on three issues which, in my opinion, play an important role in applied work and in the interpretation of the estimation result. In particular, I will discuss a) the sensitivity of posterior distributions to prior spreads; b) the effects of model misspecification and an approach to model respecification; c) parameter identification and its consequences for posterior inference.  相似文献   

2.
When statisticians are uncertain as to which parametric statistical model to use to analyse experimental data, they will often resort to a non-parametric approach. The purpose of this paper is to provide insight into a simple approach to take when it is unclear as to the appropriate parametric model and plan to conduct a Bayesian analysis. I introduce an approximate, or substitution likelihood, first proposed by Harold Jeffreys in 1939 and show how to implement the approach combined with both a non-informative and an informative prior to provide a random sample from the posterior distribution of the median of the unknown distribution. The first example I use to demonstrate the approach is a within-patient bioequivalence design and then show how to extend the approach to a parallel group design.  相似文献   

3.
This paper extends some of the work presented in Redner and Walker [I9841 on the maximum likelihood estimate of parameters in a mixture model to a Bayesian modal estimate. The problem of determining the mode of the joint posterior distribution is discussed. Necessary conditions are given for a choice of parameters to be the mode and a numerical scheme based on the EM algorithm is presented. Some theoretical remarks on the resulting iterative scheme and simulation results are also given.  相似文献   

4.
Recently, the field of multiple hypothesis testing has experienced a great expansion, basically because of the new methods developed in the field of genomics. These new methods allow scientists to simultaneously process thousands of hypothesis tests. The frequentist approach to this problem is made by using different testing error measures that allow to control the Type I error rate at a certain desired level. Alternatively, in this article, a Bayesian hierarchical model based on mixture distributions and an empirical Bayes approach are proposed in order to produce a list of rejected hypotheses that will be declared significant and interesting for a more detailed posterior analysis. In particular, we develop a straightforward implementation of a Gibbs sampling scheme where all the conditional posterior distributions are explicit. The results are compared with the frequentist False Discovery Rate (FDR) methodology. Simulation examples show that our model improves the FDR procedure in the sense that it diminishes the percentage of false negatives keeping an acceptable percentage of false positives.  相似文献   

5.
Model‐based phase I dose‐finding designs rely on a single model throughout the study for estimating the maximum tolerated dose (MTD). Thus, one major concern is about the choice of the most suitable model to be used. This is important because the dose allocation process and the MTD estimation depend on whether or not the model is reliable, or whether or not it gives a better fit to toxicity data. The aim of our work was to propose a method that would remove the need for a model choice prior to the trial onset and then allow it sequentially at each patient's inclusion. In this paper, we described model checking approach based on the posterior predictive check and model comparison approach based on the deviance information criterion, in order to identify a more reliable or better model during the course of a trial and to support clinical decision making. Further, we presented two model switching designs for a phase I cancer trial that were based on the aforementioned approaches, and performed a comparison between designs with or without model switching, through a simulation study. The results showed that the proposed designs had the advantage of decreasing certain risks, such as those of poor dose allocation and failure to find the MTD, which could occur if the model is misspecified. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The Integrated Nested Laplace Approximation (INLA) has established itself as a widely used method for approximate inference on Bayesian hierarchical models which can be represented as a latent Gaussian model (LGM). INLA is based on producing an accurate approximation to the posterior marginal distributions of the parameters in the model and some other quantities of interest by using repeated approximations to intermediate distributions and integrals that appear in the computation of the posterior marginals. INLA focuses on models whose latent effects are a Gaussian Markov random field. For this reason, we have explored alternative ways of expanding the number of possible models that can be fitted using the INLA methodology. In this paper, we present a novel approach that combines INLA and Markov chain Monte Carlo (MCMC). The aim is to consider a wider range of models that can be fitted with INLA only when some of the parameters of the model have been fixed. We show how new values of these parameters can be drawn from their posterior by using conditional models fitted with INLA and standard MCMC algorithms, such as Metropolis–Hastings. Hence, this will extend the use of INLA to fit models that can be expressed as a conditional LGM. Also, this new approach can be used to build simpler MCMC samplers for complex models as it allows sampling only on a limited number of parameters in the model. We will demonstrate how our approach can extend the class of models that could benefit from INLA, and how the R-INLA package will ease its implementation. We will go through simple examples of this new approach before we discuss more advanced applications with datasets taken from the relevant literature. In particular, INLA within MCMC will be used to fit models with Laplace priors in a Bayesian Lasso model, imputation of missing covariates in linear models, fitting spatial econometrics models with complex nonlinear terms in the linear predictor and classification of data with mixture models. Furthermore, in some of the examples we could exploit INLA within MCMC to make joint inference on an ensemble of model parameters.  相似文献   

7.
Linear models with a growing number of parameters have been widely used in modern statistics. One important problem about this kind of model is the variable selection issue. Bayesian approaches, which provide a stochastic search of informative variables, have gained popularity. In this paper, we will study the asymptotic properties related to Bayesian model selection when the model dimension p is growing with the sample size n. We consider pn and provide sufficient conditions under which: (1) with large probability, the posterior probability of the true model (from which samples are drawn) uniformly dominates the posterior probability of any incorrect models; and (2) the posterior probability of the true model converges to one in probability. Both (1) and (2) guarantee that the true model will be selected under a Bayesian framework. We also demonstrate several situations when (1) holds but (2) fails, which illustrates the difference between these two properties. Finally, we generalize our results to include g-priors, and provide simulation examples to illustrate the main results.  相似文献   

8.
Bivariate count data arise in several different disciplines (epidemiology, marketing, sports statistics just to name a few) and the bivariate Poisson distribution being a generalization of the Poisson distribution plays an important role in modelling such data. In the present paper we present a Bayesian estimation approach for the parameters of the bivariate Poisson model and provide the posterior distributions in closed forms. It is shown that the joint posterior distributions are finite mixtures of conditionally independent gamma distributions for which their full form can be easily deduced by a recursively updating scheme. Thus, the need of applying computationally demanding MCMC schemes for Bayesian inference in such models will be removed, since direct sampling from the posterior will become available, even in cases where the posterior distribution of functions of the parameters is not available in closed form. In addition, we define a class of prior distributions that possess an interesting conjugacy property which extends the typical notion of conjugacy, in the sense that both prior and posteriors belong to the same family of finite mixture models but with different number of components. Extension to certain other models including multivariate models or models with other marginal distributions are discussed.  相似文献   

9.
We establish convergence properties of sequential Bayesian optimal designs. In particular, for sequential D-optimality under a general nonlinear location-scale model for binary experiments, we establish posterior consistency, consistency of the design measure, and the asymptotic normality of posterior following the design. We illustrate our results in the context of a particular application in the design of phase I clinical trials, namely a sequential design of Haines et al. [2003. Bayesian optimal designs for phase I clinical trials. Biometrics 59, 591–600] that incorporates an ethical constraint on overdosing.  相似文献   

10.
W-graph refers to a general class of random graph models that can be seen as a random graph limit. It is characterized by both its graphon function and its motif frequencies. In this paper, relying on an existing variational Bayes algorithm for the stochastic block models (SBMs) along with the corresponding weights for model averaging, we derive an estimate of the graphon function as an average of SBMs with increasing number of blocks. In the same framework, we derive the variational posterior frequency of any motif. A simulation study and an illustration on a social network complete our work.  相似文献   

11.
Emily Sanford 《Serials Review》2017,43(3-4):303-305
ABSTRACT

“The Sharpest Tool in the Shed” column seeks to introduce new systems and tools relating to scholarly publishing, serials, electronic resources, and more. This issue's column will focus on an important but often overlooked tool for anyone engaged in the work traditionally housed in technical services (TS)—advocacy for the work of technical services. This would include both advocacy regarding how technical services work supports the library's mission and the work in other divisions. How to make that work accessible for the novice to facilitate collaboration with other library departments is also discussed. As a serials catalog librarian at Michigan State University Libraries, I have worked to make advocacy a part of what I do and how I think about my work and the work of my colleagues. Locally, this has meant the development of a series of talks around TS expertise and projects to reach out to our colleagues about our work.  相似文献   

12.
We discuss posterior sampling for two distinct multivariate generalisations of the univariate autoregressive integrated moving average (ARIMA) model with fractional integration. The existing approach to Bayesian estimation, introduced by Ravishanker & Ray, claims to provide a posterior‐sampling algorithm for fractionally integrated vector autoregressive moving averages (FIVARMAs). We show that this algorithm produces posterior draws for vector autoregressive fractionally integrated moving averages (VARFIMAs), a model of independent interest that has not previously received attention in the Bayesian literature.  相似文献   

13.
In the presence of missing values, researchers may be interested in the rates of missing information. The rates of missing information are (a) important for assessing how the missing information contributes to inferential uncertainty about, Q, the population quantity of interest, (b) are an important component in the decision of the number of imputations, and (c) can be used to test model uncertainty and model fitting. In this article I will derive the asymptotic distribution of the rates of missing information in two scenarios: the conventional multiple imputation (MI), and the two-stage MI. Numerically I will show that the proposed asymptotic distribution agrees with the simulated one. I will also suggest the number of imputations needed to obtain reliable missing information rate estimates for each method, based on the asymptotic distribution.  相似文献   

14.
Nonparametric regression using linear combinations of basis functions   总被引:1,自引:0,他引:1  
This paper discusses a Bayesian approach to nonparametric regression initially proposed by Smith and Kohn (1996. Journal of Econometrics 75: 317–344). In this approach the regression function is represented as a linear combination of basis terms. The basis terms can be univariate or multivariate functions and can include polynomials, natural splines and radial basis functions. A Bayesian hierarchical model is used such that the coefficient of each basis term can be zero with positive prior probability. The presence of basis terms in the model is determined by latent indicator variables. The posterior mean is estimated by Markov chain Monte Carlo simulation because it is computationally intractable to compute the posterior mean analytically unless a small number of basis terms is used. The present article updates the work of Smith and Kohn (1996. Journal of Econometrics 75: 317–344) to take account of work by us and others over the last three years. A careful discussion is given to all aspects of the model specification, function estimation and the use of sampling schemes. In particular, new sampling schemes are introduced to carry out the variable selection methodology.  相似文献   

15.
When a published statistical model is also distributed as computer software, it will usually be desirable to present the outputs as interval, as well as point, estimates. The present paper compares three methods for approximate interval estimation about a model output, for use when the model form does not permit an exact interval estimate. The methods considered are first-order asymptotics, using second derivatives of the log-likelihood to estimate variance information; higher-order asymptotics based on the signed-root transformation; and the non-parametric bootstrap. The signed-root method is Bayesian, and uses an approximation for posterior moments that has not previously been tested in a real-world application. Use of the three methods is illustrated with reference to a software project arising in medical decision-making, the UKPDS Risk Engine. Intervals from the first-order and signed-root methods are near- identical, and typically 1% wider to 7% narrower than those from the non-parametric bootstrap. The asymptotic methods are markedly faster than the bootstrap method.  相似文献   

16.
This study generalizes the work of chin choy and Broemeling (1980) who investigated the change in the regression parameters of univariate linear models.

The marginal posterior distributions of the change point, the regression matrices,and the precision matrix are found with the use of a proper multivariate normal-Wishart distribution for the parameters of the model.

A numerical study is undertaken in order to gain some insight into the effect that changes in sample size and certain parameter values have on these marginal posterior distributions.  相似文献   

17.
The prognosis for patients with high grade gliomas is poor, with a median survival of 1 year. Treatment efficacy assessment is typically unavailable until 5-6 months post diagnosis. Investigators hypothesize that quantitative magnetic resonance imaging can assess treatment efficacy 3 weeks after therapy starts, thereby allowing salvage treatments to begin earlier. The purpose of this work is to build a predictive model of treatment efficacy by using quantitative magnetic resonance imaging data and to assess its performance. The outcome is 1-year survival status. We propose a joint, two-stage Bayesian model. In stage I, we smooth the image data with a multivariate spatiotemporal pairwise difference prior. We propose four summary statistics that are functionals of posterior parameters from the first-stage model. In stage II, these statistics enter a generalized non-linear model as predictors of survival status. We use the probit link and a multivariate adaptive regression spline basis. Gibbs sampling and reversible jump Markov chain Monte Carlo methods are applied iteratively between the two stages to estimate the posterior distribution. Through both simulation studies and model performance comparisons we find that we can achieve higher overall correct classification rates by accounting for the spatiotemporal correlation in the images and by allowing for a more complex and flexible decision boundary provided by the generalized non-linear model.  相似文献   

18.
For asymptotic posterior normality in the one-parameter cases, Weng [2003. On Stein's identity for posterior normality. Statist. Sinica 13, 495–506] proposed to use a version of Stein's Identity to write the posterior expectations for functions of a normalized quantity in a form that is more transparent and can be easily analyzed. In the present paper we extend this approach to the multi-parameter cases and compare our conditions with earlier work. Three examples are used to illustrate the application of this method.  相似文献   

19.
We investigate a Bayesian method for the segmentation of muscle fibre images. The images are reasonably well approximated by a Dirichlet tessellation, and so we use a deformable template model based on Voronoi polygons to represent the segmented image. We consider various prior distributions for the parameters and suggest an appropriate likelihood. Following the Bayesian paradigm, the mathematical form for the posterior distribution is obtained (up to an integrating constant). We introduce a Metropolis-Hastings algorithm and a reversible jump Markov chain Monte Carlo algorithm (RJMCMC) for simulation from the posterior when the number of polygons is fixed or unknown. The particular moves in the RJMCMC algorithm are birth, death and position/colour changes of the point process which determines the location of the polygons. Segmentation of the true image was carried out using the estimated posterior mode and posterior mean. A simulation study is presented which is helpful for tuning the hyperparameters and to assess the accuracy. The algorithms work well on a real image of a muscle fibre cross-section image, and an additional parameter, which models the boundaries of the muscle fibres, is included in the final model.  相似文献   

20.
The main topic of the paper is on-line filtering for non-Gaussian dynamic (state space) models by approximate computation of the first two posterior moments using efficient numerical integration. Based on approximating the prior of the state vector by a normal density, we prove that the posterior moments of the state vector are related to the posterior moments of the linear predictor in a simple way. For the linear predictor Gauss-Hermite integration is carried out with automatic reparametrization based on an approximate posterior mode filter. We illustrate how further topics in applied state space modelling, such as estimating hyperparameters, computing model likelihoods and predictive residuals, are managed by integration-based Kalman-filtering. The methodology derived in the paper is applied to on-line monitoring of ecological time series and filtering for small count data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号