首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This paper demonstrates that cross-validation (CV) and Bayesian adaptive bandwidth selection can be applied in the estimation of associated kernel discrete functions. This idea is originally proposed by Brewer [A Bayesian model for local smoothing in kernel density estimation, Stat. Comput. 10 (2000), pp. 299–309] to derive variable bandwidths in adaptive kernel density estimation. Our approach considers the adaptive binomial kernel estimator and treats the variable bandwidths as parameters with beta prior distribution. The best variable bandwidth selector is estimated by the posterior mean in the Bayesian sense under squared error loss. Monte Carlo simulations are conducted to examine the performance of the proposed Bayesian adaptive approach in comparison with the performance of the Asymptotic mean integrated squared error estimator and CV technique for selecting a global (fixed) bandwidth proposed in Kokonendji and Senga Kiessé [Discrete associated kernels method and extensions, Stat. Methodol. 8 (2011), pp. 497–516]. The Bayesian adaptive bandwidth estimator performs better than the global bandwidth, in particular for small and moderate sample sizes.  相似文献   

2.
This paper studies bandwidth selection for kernel estimation of derivatives of multidimensional conditional densities, a non-parametric realm unexplored in the literature. This paper extends Baird [Cross validation bandwidth selection for derivatives of multidimensional densities. RAND Working Paper series, WR-1060; 2014] in its examination of conditional multivariate densities, derives and presents criteria for arbitrary kernel order and density dimension, shows consistency of the estimators, and investigates a minimization criterion which jointly estimates numerator and denominator bandwidths. I conduct a Monte Carlo simulation study for various orders of kernels in the Gaussian family and compare the new cross validation criterion with those implied by Baird [Cross validation bandwidth selection for derivatives of multidimensional densities. RAND Working Paper series, WR-1060; 2014]. The paper finds that higher order kernels become increasingly important as the dimension of the distribution increases. I find that the cross validation criterion developed in this paper that jointly estimates the derivative of the joint density (numerator) and the marginal density (denominator) does orders of magnitude better than criteria that estimate the bandwidths separately. I further find that using the infinite order Dirichlet kernel tends to have the best results.  相似文献   

3.
Consistency of Bernstein polynomial posteriors   总被引:1,自引:0,他引:1  
A Bernstein prior is a probability measure on the space of all the distribution functions on [0, 1]. Under very general assumptions, it selects absolutely continuous distribution functions, whose densities are mixtures of known beta densities. The Bernstein prior is of interest in Bayesian nonparametric inference with continuous data. We study the consistency of the posterior from a Bernstein prior. We first show that, under mild assumptions, the posterior is weakly consistent for any distribution function P 0 on [0, 1] with continuous and bounded Lebesgue density. With slightly stronger assumptions on the prior, the posterior is also Hellinger consistent. This implies that the predictive density from a Bernstein prior, which is a Bayesian density estimate, converges in the Hellinger sense to the true density (assuming that it is continuous and bounded). We also study a sieve maximum likelihood version of the density estimator and show that it is also Hellinger consistent under weak assumptions. When the order of the Bernstein polynomial, i.e. the number of components in the beta distribution mixture, is truncated, we show that under mild restrictions the posterior concentrates on the set of pseudotrue densities. Finally, we study the behaviour of the predictive density numerically and we also study a hybrid Bayes–maximum likelihood density estimator.  相似文献   

4.
Abstract.  The marginal density of a first order moving average process can be written as a convolution of two innovation densities. Saavedra & Cao [Can. J. Statist. (2000), 28, 799] propose to estimate the marginal density by plugging in kernel density estimators for the innovation densities, based on estimated innovations. They obtain that for an appropriate choice of bandwidth the variance of their estimator decreases at the rate 1/ n . Their estimator can be interpreted as a specific U -statistic. We suggest a slightly simplified U -statistic as estimator of the marginal density, prove that it is asymptotically normal at the same rate, and describe the asymptotic variance explicitly. We show that the estimator is asymptotically efficient if no structural assumptions are made on the innovation density. For innovation densities known to have mean zero or to be symmetric, we describe improvements of our estimator which are again asymptotically efficient.  相似文献   

5.
We propose a modification to the regular kernel density estimation method that use asymmetric kernels to circumvent the spill over problem for densities with positive support. First a pivoting method is introduced for placement of the data relative to the kernel function. This yields a strongly consistent density estimator that integrates to one for each fixed bandwidth in contrast to most density estimators based on asymmetric kernels proposed in the literature. Then a data-driven Bayesian local bandwidth selection method is presented and lognormal, gamma, Weibull and inverse Gaussian kernels are discussed as useful special cases. Simulation results and a real-data example illustrate the advantages of the new methodology.  相似文献   

6.
Abstract. The problem of estimating an unknown density function has been widely studied. In this article, we present a convolution estimator for the density of the responses in a nonlinear heterogenous regression model. The rate of convergence for the mean square error of the convolution estimator is of order n ?1 under certain regularity conditions. This is faster than the rate for the kernel density method. We derive explicit expressions for the asymptotic variance and the bias of the new estimator, and further a data‐driven bandwidth selector is proposed. We conduct simulation experiments to check the finite sample properties, and the convolution estimator performs substantially better than the kernel density estimator for well‐behaved noise densities.  相似文献   

7.
We investigate the interplay of smoothness and monotonicity assumptions when estimating a density from a sample of observations. The nonparametric maximum likelihood estimator of a decreasing density on the positive half line attains a rate of convergence of [Formula: See Text] at a fixed point t if the density has a negative derivative at t. The same rate is obtained by a kernel estimator of bandwidth [Formula: See Text], but the limit distributions are different. If the density is both differentiable at t and known to be monotone, then a third estimator is obtained by isotonization of a kernel estimator. We show that this again attains the rate of convergence [Formula: See Text], and compare the limit distributions of the three types of estimators. It is shown that both isotonization and smoothing lead to a more concentrated limit distribution and we study the dependence on the proportionality constant in the bandwidth. We also show that isotonization does not change the limit behaviour of a kernel estimator with a bandwidth larger than [Formula: See Text], in the case that the density is known to have more than one derivative.  相似文献   

8.
Yu-Ye Zou 《Statistics》2017,51(6):1214-1237
In this paper, we define the nonlinear wavelet estimator of density for the right censoring model with the censoring indicator missing at random (MAR), and develop its asymptotic expression for mean integrated squared error (MISE). Unlike for kernel estimator, the MISE expression of the estimator is not affected by the presence of discontinuities in the curve. Meanwhile, asymptotic normality of the estimator is established. The proposed estimator can reduce to the estimator defined by Li [Non-linear wavelet-based density estimators under random censorship. J Statist Plann Inference. 2003;117(1):35–58] when the censoring indicator MAR does not occur and a bandwidth in non-parametric estimation is close to zero. Also, we define another two nonlinear wavelet estimators of the density. A simulation is done to show the performance of the three proposed estimators.  相似文献   

9.
In this paper we study the ideal variable bandwidth kernel density estimator introduced by McKay (1993a, b) and Jones et al. (1994) and the plug-in practical version of the variable bandwidth kernel estimator with two sequences of bandwidths as in Giné and Sang (2013). Based on the bias and variance analysis of the ideal and plug-in variable bandwidth kernel density estimators, we study the central limit theorems for each of them. The simulation study confirms the central limit theorem and demonstrates the advantage of the plug-in variable bandwidth kernel method over the classical kernel method.  相似文献   

10.
This paper considers the problem of selecting optimal bandwidths for variable (sample‐point adaptive) kernel density estimation. A data‐driven variable bandwidth selector is proposed, based on the idea of approximating the log‐bandwidth function by a cubic spline. This cubic spline is optimized with respect to a cross‐validation criterion. The proposed method can be interpreted as a selector for either integrated squared error (ISE) or mean integrated squared error (MISE) optimal bandwidths. This leads to reflection upon some of the differences between ISE and MISE as error criteria for variable kernel estimation. Results from simulation studies indicate that the proposed method outperforms a fixed kernel estimator (in terms of ISE) when the target density has a combination of sharp modes and regions of smooth undulation. Moreover, some detailed data analyses suggest that the gains in ISE may understate the improvements in visual appeal obtained using the proposed variable kernel estimator. These numerical studies also show that the proposed estimator outperforms existing variable kernel density estimators implemented using piecewise constant bandwidth functions.  相似文献   

11.
Interval-grouped data are defined, in general, when the event of interest cannot be directly observed and it is only known to have been occurred within an interval. In this framework, a nonparametric kernel density estimator is proposed and studied. The approach is based on the classical Parzen–Rosenblatt estimator and on the generalisation of the binned kernel density estimator. The asymptotic bias and variance of the proposed estimator are derived under usual assumptions, and the effect of using non-equally spaced grouped data is analysed. Additionally, a plug-in bandwidth selector is proposed. Through a comprehensive simulation study, the behaviour of both the estimator and the plug-in bandwidth selector considering different scenarios of data grouping is shown. An application to real data confirms the simulation results, revealing the good performance of the estimator whenever data are not heavily grouped.  相似文献   

12.
A data-driven bandwidth choice for a kernel density estimator called critical bandwidth is investigated. This procedure allows the estimation to have as many modes as assumed for the density to estimate. Both Gaussian and uniform kernels are considered. For the Gaussian kernel, asymptotic results are given. For the uniform kernel, an argument against these properties is mentioned. These theoretical results are illustrated with a simulation study that compares the kernel estimators that rely on critical bandwidth with another one that uses a plug-in method to select its bandwidth. An estimator that consists in estimates of density contour clusters and takes assumptions on number of modes into account is also considered. Finally, the methodology is illustrated using environment monitoring data.  相似文献   

13.
We propose a Bayesian nonparametric procedure for density estimation, for data in a closed, bounded interval, say [0,1]. To this aim, we use a prior based on Bemstein polynomials. This corresponds to expressing the density of the data as a mixture of given beta densities, with random weights and a random number of components. The density estimate is then obtained as the corresponding predictive density function. Comparison with classical and Bayesian kernel estimates is provided. The proposed procedure is illustrated in an example; an MCMC algorithm for approximating the estimate is also discussed.  相似文献   

14.
The standard approach to non-parametric bivariate density estimation is to use a kernel density estimator. Practical performance of this estimator is hindered by the fact that the estimator is not adaptive (in the sense that the level of smoothing is not sensitive to local properties of the density). In this paper a simple, automatic and adaptive bivariate density estimator is proposed based on the estimation of marginal and conditional densities. Asymptotic properties of the estimator are examined, and guidance to practical application of the method is given. Application to two examples illustrates the usefulness of the estimator as an exploratory tool, particularly in situations where the local behaviour of the density varies widely. The proposed estimator is also appropriate for use as a pilot estimate for an adaptive kernel estimate, since it is relatively inexpensive to calculate.  相似文献   

15.
This paper considers the Bayesian analysis of the multivariate normal distribution under a new and bounded loss function, based on a reflection of the multivariate normal density function. The Bayes estimators of the mean vector can be derived for an arbitrary prior distribution of [d]. When the covariance matrix has an inverted Wishart prior density, a Bayes estimator of[d] is obtained under a bounded loss function, based on the entropy loss. Finally the admissibility of all linear estimators c[d]+ d for the mean vector is considered  相似文献   

16.
In this paper, the kernel density estimator for negatively superadditive dependent random variables is studied. The exponential inequalities and the exponential rate for the kernel estimator of density function with a uniform version, over compact sets are investigated. Also, the optimal bandwidth rate of the estimator is obtained using mean integrated squared error. The results are generalized and used to improve the ones obtained for the case of associated sequences. As an application, FGM sequences that fulfil our assumptions are investigated. Also, the convergence rate of the kernel density estimator is illustrated via a simulation study. Moreover, a real data analysis is presented.  相似文献   

17.
A crucial problem in kernel density estimates of a probability density function is the selection of the bandwidth. The aim of this study is to propose a procedure for selecting both fixed and variable bandwidths. The present study also addresses the question of how different variable bandwidth kernel estimators perform in comparison with each other and to the fixed type of bandwidth estimators. The appropriate algorithms for implementation of the proposed method are given along with a numerical simulation.The numerical results serve as a guide to determine which bandwidth selection method is most appropriate for a given type of estimator over a vide class of probability density functions, Also, we obtain a numerical comparison of the different types of kernel estimators under various types of bandwidths.  相似文献   

18.
It is well established that bandwidths exist that can yield an unbiased non–parametric kernel density estimate at points in particular regions (e.g. convex regions) of the underlying density. These zero–bias bandwidths have superior theoretical properties, including a 1/n convergence rate of the mean squared error. However, the explicit functional form of the zero–bias bandwidth has remained elusive. It is difficult to estimate these bandwidths and virtually impossible to achieve the higher–order rate in practice. This paper addresses these issues by taking a fundamentally different approach to the asymptotics of the kernel density estimator to derive a functional approximation to the zero–bias bandwidth. It develops a simple approximation algorithm that focuses on estimating these zero–bias bandwidths in the tails of densities where the convexity conditions favourable to the existence of the zerobias bandwidths are more natural. The estimated bandwidths yield density estimates with mean squared error that is O(n–4/5), the same rate as the mean squared error of density estimates with other choices of local bandwidths. Simulation studies and an illustrative example with air pollution data show that these estimated zero–bias bandwidths outperform other global and local bandwidth estimators in estimating points in the tails of densities.  相似文献   

19.
Abstract

In this work, we propose beta prime kernel estimator for estimation of a probability density functions defined with nonnegative support. For the proposed estimator, beta prime probability density function used as a kernel. It is free of boundary bias and nonnegative with a natural varying shape. We obtained the optimal rate of convergence for the mean squared error (MSE) and the mean integrated squared error (MISE). Also, we use adaptive Bayesian bandwidth selection method with Lindley approximation for heavy tailed distributions and compare its performance with the global least squares cross-validation bandwidth selection method. Simulation studies are performed to evaluate the average integrated squared error (ISE) of the proposed kernel estimator against some asymmetric competitors using Monte Carlo simulations. Moreover, real data sets are presented to illustrate the findings.  相似文献   

20.
Kernel Density Estimation on a Linear Network   总被引:1,自引:0,他引:1       下载免费PDF全文
This paper develops a statistically principled approach to kernel density estimation on a network of lines, such as a road network. Existing heuristic techniques are reviewed, and their weaknesses are identified. The correct analogue of the Gaussian kernel is the ‘heat kernel’, the occupation density of Brownian motion on the network. The corresponding kernel estimator satisfies the classical time‐dependent heat equation on the network. This ‘diffusion estimator’ has good statistical properties that follow from the heat equation. It is mathematically similar to an existing heuristic technique, in that both can be expressed as sums over paths in the network. However, the diffusion estimate is an infinite sum, which cannot be evaluated using existing algorithms. Instead, the diffusion estimate can be computed rapidly by numerically solving the time‐dependent heat equation on the network. This also enables bandwidth selection using cross‐validation. The diffusion estimate with automatically selected bandwidth is demonstrated on road accident data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号