首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stochastic frontier models are widely used to measure, e.g., technical efficiencies of firms. The classical stochastic frontier model often suffers from the empirical artefact that the residuals of the production function may have a positive skewness, whereas a negative one is expected under the model, which leads to estimated full efficiencies of all firms. We propose a new approach to the problem by generalizing the distribution used for the inefficiency variable. This generalized stochastic frontier model allows the sample data to have the wrong skewness while estimating well-defined and nondegenerate efficiency measures. We discuss the statistical properties of the model, and we discuss a test for the symmetry of the error term (no inefficiency). We provide a simulation study to show that our model delivers estimators of efficiency with smaller bias than those of the classical model even if the population skewness has the correct sign. Finally, we apply the model to data of the U.S. textile industry for 1958–2005 and show that for a number of years our model suggests technical efficiencies well below the frontier while the classical one estimates no inefficiency in those years.  相似文献   

2.
Traditional Box–Jenkins prediction intervals perform poorly when the innovations are not Gaussian. Nonparametric bootstrap procedures overcome this handicap, but most existing methods assume that the AR and MA orders of the process are known. The sieve bootstrap approach requires no such assumption but produces liberal coverage due to the use of residuals that underestimate the actual variance of the innovations and the failure of the methods to capture variations due to sampling error of the mean. A modified approach, that corrects these deficiencies, is implemented. Monte Carlo simulations results show that the modified version achieves nominal or near nominal coverage.  相似文献   

3.
We propose bootstrap prediction intervals for an observation h periods into the future and its conditional mean. We assume that these forecasts are made using a set of factors extracted from a large panel of variables. Because we treat these factors as latent, our forecasts depend both on estimated factors and estimated regression coefficients. Under regularity conditions, asymptotic intervals have been shown to be valid under Gaussianity of the innovations. The bootstrap allows us to relax this assumption and to construct valid prediction intervals under more general conditions. Moreover, even under Gaussianity, the bootstrap leads to more accurate intervals in cases where the cross-sectional dimension is relatively small as it reduces the bias of the ordinary least-squares (OLS) estimator.  相似文献   

4.
The Bootstrap and Kriging Prediction Intervals   总被引:1,自引:0,他引:1  
Kriging is a method for spatial prediction that, given observations of a spatial process, gives the optimal linear predictor of the process at a new specified point. The kriging predictor may be used to define a prediction interval for the value of interest. The coverage of the prediction interval will, however, equal the nominal desired coverage only if it is constructed using the correct underlying covariance structure of the process. If this is unknown, it must be estimated from the data. We study the effect on the coverage accuracy of the prediction interval of substituting the true covariance parameters by estimators, and the effect of bootstrap calibration of coverage properties of the resulting 'plugin' interval. We demonstrate that plugin and bootstrap calibrated intervals are asymptotically accurate in some generality and that bootstrap calibration appears to have a significant effect in improving the rate of convergence of coverage error.  相似文献   

5.
In this paper we use bootstrap methodology to achieve accurate estimated prediction intervals for recovery rates. In the framework of the LossCalc model, which is the Moody's KMV model to predict loss given default, a single beta distribution is usually assumed to model the behaviour of recovery rates and, hence, to construct prediction intervals. We evaluate the coverage properties of beta estimated prediction intervals for multimodal recovery rates. We carry out a simulation study, and our results show that bootstrap versions of beta mixture prediction intervals exhibit the best coverage properties.  相似文献   

6.
Monte Carlo evidence shows that in structural VAR models with fat-tailed or skewed innovations the coverage accuracy of impulse response confidence intervals may deterorate substantially compared to the same model with Gaussian innovations. Empirical evidance suggests that such departures from normality are quite plausible for economic time series. The simulation results suggest that applied researchers are best off using nonparametric bootstrap intervals for impulse responses, regardless of whether or not there is evidence of fat tails or skewness in the error distribution. Allowing for departures from normality is shown to considerably weaken the evidence of the delayed overshooting puzzle in Eichenbaum and Evans (1995).  相似文献   

7.
Leave-one-out and 632 bootstrap are popular data-based methods of estimating the true error rate of a classification rule, but practical applications almost exclusively quote only point estimates. Interval estimation would provide better assessment of the future performance of the rule, but little has been published on this topic. We first review general-purpose jackknife and bootstrap methodology that can be used in conjunction with leave-one-out estimates to provide prediction intervals for true error rates of classification rules. Monte Carlo simulation is then used to investigate coverage rates of the resulting intervals for normal data, but the results are disappointing; standard intervals show considerable overinclusion, intervals based on Edgeworth approximations or random weighting do not perform well, and while a bootstrap approach provides intervals with coverage rates closer to the nominal ones there is still marked underinclusion. We then turn to intervals constructed from 632 bootstrap estimates, and show that much better results are obtained. Although there is now some overinclusion, particularly for large training samples, the actual coverage rates are sufficiently close to the nominal rates for the method to be recommended. An application to real data illustrates the considerable variability that can arise in practical estimation of error rates.  相似文献   

8.
For interval estimation of a proportion, coverage probabilities tend to be too large for “exact” confidence intervals based on inverting the binomial test and too small for the interval based on inverting the Wald large-sample normal test (i.e., sample proportion ± z-score × estimated standard error). Wilson's suggestion of inverting the related score test with null rather than estimated standard error yields coverage probabilities close to nominal confidence levels, even for very small sample sizes. The 95% score interval has similar behavior as the adjusted Wald interval obtained after adding two “successes” and two “failures” to the sample. In elementary courses, with the score and adjusted Wald methods it is unnecessary to provide students with awkward sample size guidelines.  相似文献   

9.
Abstract.  Conventional bootstrap- t intervals for density functions based on kernel density estimators exhibit poor coverages due to failure of the bootstrap to estimate the bias correctly. The problem can be resolved by either estimating the bias explicitly or undersmoothing the kernel density estimate to undermine its bias asymptotically. The resulting bias-corrected intervals have an optimal coverage error of order arbitrarily close to second order for a sufficiently smooth density function. We investigated the effects on coverage error of both bias-corrected intervals when the nominal coverage level is calibrated by the iterated bootstrap. In either case, an asymptotic reduction of coverage error is possible provided that the bias terms are handled using an extra round of smoothed bootstrapping. Under appropriate smoothness conditions, the optimal coverage error of the iterated bootstrap- t intervals has order arbitrarily close to third order. Examples of both simulated and real data are reported to illustrate the iterated bootstrap procedures.  相似文献   

10.
In this paper, we consider the simple step-stress model for a two-parameter exponential distribution, when both the parameters are unknown and the data are Type-II censored. It is assumed that under two different stress levels, the scale parameter only changes but the location parameter remains unchanged. It is observed that the maximum likelihood estimators do not always exist. We obtain the maximum likelihood estimates of the unknown parameters whenever they exist. We provide the exact conditional distributions of the maximum likelihood estimators of the scale parameters. Since the construction of the exact confidence intervals is very difficult from the conditional distributions, we propose to use the observed Fisher Information matrix for this purpose. We have suggested to use the bootstrap method for constructing confidence intervals. Bayes estimates and associated credible intervals are obtained using the importance sampling technique. Extensive simulations are performed to compare the performances of the different confidence and credible intervals in terms of their coverage percentages and average lengths. The performances of the bootstrap confidence intervals are quite satisfactory even for small sample sizes.  相似文献   

11.
One of the indicators for evaluating the capability of a process is the process capability index. In this article, bootstrap confidence intervals of the generalized process capability index (GPCI) proposed by Maiti et al. are studied through simulation, when the underlying distributions are Lindley and Power Lindley distributions. The maximum likelihood method is used to estimate the parameters of the models. Three bootstrap confidence intervals namely, standard bootstrap (SB), percentile bootstrap (PB), and bias-corrected percentile bootstrap (BCPB) are considered for obtaining confidence intervals of GPCI. A Monte Carlo simulation has been used to investigate the estimated coverage probabilities and average width of the bootstrap confidence intervals. Simulation results show that the estimated coverage probabilities of the percentile bootstrap confidence interval and the bias-corrected percentile bootstrap confidence interval get closer to the nominal confidence level than those of the standard bootstrap confidence interval. Finally, three real datasets are analyzed for illustrative purposes.  相似文献   

12.
In this paper, me shall investigate a bootstrap method hasd on a martingale representation of the relevant statistic for inference to a class of functionals of the survival distribution. The method is similar in spirit to Efron's (1981) bootstrap, and thus in the present paper will be referred to as “martingale-based bootstrap” The method was derived from Lin,Wei and Ying (1993), who appiied the method in checking the Cox model with cumulative sums of martingale-based residuals. It is shown that this martingale-based bootstrap gives a correct first-order asymptotic approximation to the distribution function of the corresponding functional of the Kaplan-Meier estimator. As a consequence, confidence intervals constructed by the martingale-based bootstrap have asymptotially correct coverage probability. Our simulation study indicats that the martingale-based bootst strap method for a small and moderate sample sizes can be uniformly better than the usual bootstrap method in estimating the sampling distribution for a mean function and a point probability in survival analysis.  相似文献   

13.
The prediction error for mixed models can have a conditional or a marginal perspective depending on the research focus. We introduce a novel conditional version of the optimism theorem for mixed models linking the conditional prediction error to covariance penalties for mixed models. Different possibilities for estimating these conditional covariance penalties are introduced. These are bootstrap methods, cross-validation, and a direct approach called Steinian. The behavior of the different estimation techniques is assessed in a simulation study for the binomial-, the t-, and the gamma distribution and for different kinds of prediction error. Furthermore, the impact of the estimation techniques on the prediction error is discussed based on an application to undernutrition in Zambia.  相似文献   

14.
A version of the nonparametric bootstrap, which resamples the entire subjects from original data, called the case bootstrap, has been increasingly used for estimating uncertainty of parameters in mixed‐effects models. It is usually applied to obtain more robust estimates of the parameters and more realistic confidence intervals (CIs). Alternative bootstrap methods, such as residual bootstrap and parametric bootstrap that resample both random effects and residuals, have been proposed to better take into account the hierarchical structure of multi‐level and longitudinal data. However, few studies have been performed to compare these different approaches. In this study, we used simulation to evaluate bootstrap methods proposed for linear mixed‐effect models. We also compared the results obtained by maximum likelihood (ML) and restricted maximum likelihood (REML). Our simulation studies evidenced the good performance of the case bootstrap as well as the bootstraps of both random effects and residuals. On the other hand, the bootstrap methods that resample only the residuals and the bootstraps combining case and residuals performed poorly. REML and ML provided similar bootstrap estimates of uncertainty, but there was slightly more bias and poorer coverage rate for variance parameters with ML in the sparse design. We applied the proposed methods to a real dataset from a study investigating the natural evolution of Parkinson's disease and were able to confirm that the methods provide plausible estimates of uncertainty. Given that most real‐life datasets tend to exhibit heterogeneity in sampling schedules, the residual bootstraps would be expected to perform better than the case bootstrap. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
This article deals with the bootstrap as an alternative method to construct confidence intervals for the hyperparameters of structural models. The bootstrap procedure considered is the classical nonparametric bootstrap in the residuals of the fitted model using a well-known approach. The performance of this procedure is empirically obtained through Monte Carlo simulations implemented in Ox. Asymptotic and percentile bootstrap confidence intervals for the hyperparameters are built and compared by means of the coverage percentages. The results are similar but the bootstrap procedure is better for small sample sizes. The methods are applied to a real time series and confidence intervals are built for the hyperparameters.  相似文献   

16.
In this paper the out-of-sample prediction of Value-at-Risk by means of models accounting for higher moments is studied. We consider models differing in terms of skewness and kurtosis and, in particular, the GARCHDSK model, which allows for constant and dynamic skewness and kurtosis. The issue of VaR prediction performance is approached first from a purely statistical viewpoint, studying the properties concerning correct coverage rates and independence of VaR violations. Then, financial implications of different VaR models, in terms of market risk capital requirements, as defined by the Basel Accord, are considered. Our results, based on the analysis of eight international stock indexes, highlight the presence of conditional skewness and kurtosis, in some case time-varying, and point out that asymmetry plays a significant role in risk management.  相似文献   

17.
We discuss and evaluate bootstrap algorithms for obtaining confidence intervals for parameters in Generalized Linear Models when the data are correlated. The methods are based on a stratified bootstrap and are suited to correlation occurring within “blocks” of data (e.g., individuals within a family, teeth within a mouth, etc.). Application of the intervals to data from a Dutch follow-up study on preterm infants shows the corroborative usefulness of the intervals, while the intervals are seen to be a powerful diagnostic in studying annual measles data. In a simulation study, we compare the coverage rates of the proposed intervals with existing methods (e.g., via Generalized Estimating Equations). In most cases, the bootstrap intervals are seen to perform better than current methods, and are produced in an automatic fashion, so that the user need not know (or have to guess) the dependence structure within a block.  相似文献   

18.
Log-normal linear models are widely used in applications, and many times it is of interest to predict the response variable or to estimate the mean of the response variable at the original scale for a new set of covariate values. In this paper we consider the problem of efficient estimation of the conditional mean of the response variable at the original scale for log-normal linear models. Several existing estimators are reviewed first, including the maximum likelihood (ML) estimator, the restricted ML (REML) estimator, the uniformly minimum variance unbiased (UMVU) estimator, and a bias-corrected REML estimator. We then propose two estimators that minimize the asymptotic mean squared error and the asymptotic bias, respectively. A parametric bootstrap procedure is also described to obtain confidence intervals for the proposed estimators. Both the new estimators and the bootstrap procedure are very easy to implement. Comparisons of the estimators using simulation studies suggest that our estimators perform better than the existing ones, and the bootstrap procedure yields confidence intervals with good coverage properties. A real application of estimating the mean sediment discharge is used to illustrate the methodology.  相似文献   

19.
We show that, in the context of double-bootstrap confidence intervals, linear interpolation at the second level of the double bootstrap can reduce the simulation error component of coverage error by an order of magnitude. Intervals that are indistinguishable in terms of coverage error with theoretical, infinite simulation, double-bootstrap confidence intervals may be obtained at substantially less computational expense than by using the standard Monte Carlo approximation method. The intervals retain the simplicity of uniform bootstrap sampling and require no special analysis or computational techniques. Interpolation at the first level of the double bootstrap is shown to have a relatively minor effect on the simulation error.  相似文献   

20.
The sieve bootstrap (SB) prediction intervals for invertible autoregressive moving average (ARMA) processes are constructed using resamples of residuals obtained by fitting a finite degree autoregressive approximation to the time series. The advantage of this approach is that it does not require the knowledge of the orders, p and q, associated with the ARMA(p, q) model. Up until recently, the application of this method has been limited to ARMA processes whose autoregressive polynomials do not have fractional unit roots. The authors, in a 2012 publication, introduced a version of the SB suitable for fractionally integrated autoregressive moving average (FARIMA (p,d,q)) processes with 0<d<0.5 and established its asymptotic validity. Herein, we study the finite sample properties this new method and compare its performance against an older method introduced by Bisaglia and Grigoletto in 2001. The sieve bootstrap (SB) method is a numerically simpler alternative to the older method which requires the estimation of p, d, and q at every bootstrap step. Monte-Carlo simulation studies, carried out under the assumption of normal, mixture of normals, and exponential distributions for the innovations, show near nominal coverages for short-term and long-term SB prediction intervals under most situations. In addition, the sieve bootstrap method yields better coverage and narrower intervals compared to the Bisaglia–Grigoletto method in some situations, especially when the error distribution is a mixture of normals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号