首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the outlier detection and robust variable selection problem in the linear regression model. The penalized weighted least absolute deviation (PWLAD) regression estimation method and the adaptive least absolute shrinkage and selection operator (LASSO) are combined to simultaneously achieve outlier detection, and robust variable selection. An iterative algorithm is proposed to solve the proposed optimization problem. Monte Carlo studies are evaluated the finite-sample performance of the proposed methods. The results indicate that the finite sample performance of the proposed methods performs better than that of the existing methods when there are leverage points or outliers in the response variable or explanatory variables. Finally, we apply the proposed methodology to analyze two real datasets.  相似文献   

2.
Nonparametric seemingly unrelated regression provides a powerful alternative to parametric seemingly unrelated regression for relaxing the linearity assumption. The existing methods are limited, particularly with sharp changes in the relationship between the predictor variables and the corresponding response variable. We propose a new nonparametric method for seemingly unrelated regression, which adopts a tree-structured regression framework, has satisfiable prediction accuracy and interpretability, no restriction on the inclusion of categorical variables, and is less vulnerable to the curse of dimensionality. Moreover, an important feature is constructing a unified tree-structured model for multivariate data, even though the predictor variables corresponding to the response variable are entirely different. This unified model can offer revelatory insights such as underlying economic meaning. We propose the key factors of tree-structured regression, which are an impurity function detecting complex nonlinear relationships between the predictor variables and the response variable, split rule selection with negligible selection bias, and tree size determination solving underfitting and overfitting problems. We demonstrate our proposed method using simulated data and illustrate it using data from the Korea stock exchange sector indices.  相似文献   

3.
Variable selection methods have been widely used in the analysis of high-dimensional data, for example, gene expression microarray data and single nucleotide polymorphism data. A special feature of the genomic data is that genes participating in a common metabolic pathway or sharing a similar biological function tend to have high correlations. The collinearity naturally embedded in these data requires special handling, which cannot be provided by existing variable selection methods. In this paper, we propose a set of new methods to select variables in correlated data. The new methods follow the forward selection procedure of least angle regression (LARS) but conduct grouping and selecting at the same time. The methods specially work when no prior information on group structures of data is available. Simulations and real examples show that our proposed methods often outperform the existing variable selection methods, including LARS and elastic net, in terms of both reducing prediction error and preserving sparsity of representation.  相似文献   

4.
面板数据的自适应Lasso分位回归方法研究   总被引:1,自引:0,他引:1  
如何在对参数进行估计的同时自动选择重要解释变量,一直是面板数据分位回归模型中讨论的热点问题之一。通过构造一种含多重随机效应的贝叶斯分层分位回归模型,在假定固定效应系数先验服从一种新的条件Laplace分布的基础上,给出了模型参数估计的Gibbs抽样算法。考虑到不同重要程度的解释变量权重系数压缩程度应该不同,所构造的先验信息具有自适应性的特点,能够准确地对模型中重要解释变量进行自动选取,且设计的切片Gibbs抽样算法能够快速有效地解决模型中各个参数的后验均值估计问题。模拟结果显示,新方法在参数估计精确度和变量选择准确度上均优于现有文献的常用方法。通过对中国各地区多个宏观经济指标的面板数据进行建模分析,演示了新方法估计参数与挑选变量的能力。  相似文献   

5.
Abstract

In this paper we are concerned with variable selection in finite mixture of semiparametric regression models. This task consists of model selection for non parametric component and variable selection for parametric part. Thus, we encountered separate model selections for every non parametric component of each sub model. To overcome this computational burden, we introduced a class of variable selection procedures for finite mixture of semiparametric regression models using penalized approach for variable selection. It is shown that the new method is consistent for variable selection. Simulations show that the performance of proposed method is good, and it consequently improves pervious works in this area and also requires much less computing power than existing methods.  相似文献   

6.
Variable selection is an important task in regression analysis. Performance of the statistical model highly depends on the determination of the subset of predictors. There are several methods to select most relevant variables to construct a good model. However in practice, the dependent variable may have positive continuous values and not normally distributed. In such situations, gamma distribution is more suitable than normal for building a regression model. This paper introduces an heuristic approach to perform variable selection using artificial bee colony optimization for gamma regression models. We evaluated the proposed method against with classical selection methods such as backward and stepwise. Both simulation studies and real data set examples proved the accuracy of our selection procedure.  相似文献   

7.
Stepwise variable selection procedures are computationally inexpensive methods for constructing useful regression models for a single dependent variable. At each step a variable is entered into or deleted from the current model, based on the criterion of minimizing the error sum of squares (SSE). When there is more than one dependent variable, the situation is more complex. In this article we propose variable selection criteria for multivariate regression which generalize the univariate SSE criterion. Specifically, we suggest minimizing some function of the estimated error covariance matrix: the trace, the determinant, or the largest eigenvalue. The computations associated with these criteria may be burdensome. We develop a computational framework based on the use of the SWEEP operator which greatly reduces these calculations for stepwise variable selection in multivariate regression.  相似文献   

8.
This paper is concerned with selection of explanatory variables in generalized linear models (GLM). The class of GLM's is quite large and contains e.g. the ordinary linear regression, the binary logistic regression, the probit model and Poisson regression with linear or log-linear parameter structure. We show that, through an approximation of the log likelihood and a certain data transformation, the variable selection problem in a GLM can be converted into variable selection in an ordinary (unweighted) linear regression model. As a consequence no specific computer software for variable selection in GLM's is needed. Instead, some suitable variable selection program for linear regression can be used. We also present a simulation study which shows that the log likelihood approximation is very good in many practical situations. Finally, we mention briefly possible extensions to regression models outside the class of GLM's.  相似文献   

9.
In this paper, we consider the weighted composite quantile regression for linear model with left-truncated data. The adaptive penalized procedure for variable selection is proposed. The asymptotic normality and oracle property of the resulting estimators are also established. Simulation studies are conducted to illustrate the finite sample performance of the proposed methods.  相似文献   

10.
Summary.  The family of inverse regression estimators that was recently proposed by Cook and Ni has proven effective in dimension reduction by transforming the high dimensional predictor vector to its low dimensional projections. We propose a general shrinkage estimation strategy for the entire inverse regression estimation family that is capable of simultaneous dimension reduction and variable selection. We demonstrate that the new estimators achieve consistency in variable selection without requiring any traditional model, meanwhile retaining the root n estimation consistency of the dimension reduction basis. We also show the effectiveness of the new estimators through both simulation and real data analysis.  相似文献   

11.
Interaction is very common in reality, but has received little attention in logistic regression literature. This is especially true for higher-order interactions. In conventional logistic regression, interactions are typically ignored. We propose a model selection procedure by implementing an association rules analysis. We do this by (1) exploring the combinations of input variables which have significant impacts to response (via association rules analysis); (2) selecting the potential (low- and high-order) interactions; (3) converting these potential interactions into new dummy variables; and (4) performing variable selections among all the input variables and the newly created dummy variables (interactions) to build up the optimal logistic regression model. Our model selection procedure establishes the optimal combination of main effects and potential interactions. The comparisons are made through thorough simulations. It is shown that the proposed method outperforms the existing methods in all cases. A real-life example is discussed in detail to demonstrate the proposed method.  相似文献   

12.
When variable selection with stepwise regression and model fitting are conducted on the same data set, competition for inclusion in the model induces a selection bias in coefficient estimators away from zero. In proportional hazards regression with right-censored data, selection bias inflates the absolute value of parameter estimate of selected parameters, while the omission of other variables may shrink coefficients toward zero. This paper explores the extent of the bias in parameter estimates from stepwise proportional hazards regression and proposes a bootstrap method, similar to those proposed by Miller (Subset Selection in Regression, 2nd edn. Chapman & Hall/CRC, 2002) for linear regression, to correct for selection bias. We also use bootstrap methods to estimate the standard error of the adjusted estimators. Simulation results show that substantial biases could be present in uncorrected stepwise estimators and, for binary covariates, could exceed 250% of the true parameter value. The simulations also show that the conditional mean of the proposed bootstrap bias-corrected parameter estimator, given that a variable is selected, is moved closer to the unconditional mean of the standard partial likelihood estimator in the chosen model, and to the population value of the parameter. We also explore the effect of the adjustment on estimates of log relative risk, given the values of the covariates in a selected model. The proposed method is illustrated with data sets in primary biliary cirrhosis and in multiple myeloma from the Eastern Cooperative Oncology Group.  相似文献   

13.
In this article, the problem of parameter estimation and variable selection in the Tobit quantile regression model is considered. A Tobit quantile regression with the elastic net penalty from a Bayesian perspective is proposed. Independent gamma priors are put on the l1 norm penalty parameters. A novel aspect of the Bayesian elastic net Tobit quantile regression is to treat the hyperparameters of the gamma priors as unknowns and let the data estimate them along with other parameters. A Bayesian Tobit quantile regression with the adaptive elastic net penalty is also proposed. The Gibbs sampling computational technique is adapted to simulate the parameters from the posterior distributions. The proposed methods are demonstrated by both simulated and real data examples.  相似文献   

14.
Classification models can demonstrate apparent prediction accuracy even when there is no underlying relationship between the predictors and the response. Variable selection procedures can lead to false positive variable selections and overestimation of true model performance. A simulation study was conducted using logistic regression with forward stepwise, best subsets, and LASSO variable selection methods with varying total sample sizes (20, 50, 100, 200) and numbers of random noise predictor variables (3, 5, 10, 15, 20, 50). Using our critical values can help reduce needless follow-up on variables having no true association with the outcome.  相似文献   

15.
Jing Yang  Fang Lu  Hu Yang 《Statistics》2017,51(6):1179-1199
In this paper, we develop a new estimation procedure based on quantile regression for semiparametric partially linear varying-coefficient models. The proposed estimation approach is empirically shown to be much more efficient than the popular least squares estimation method for non-normal error distributions, and almost not lose any efficiency for normal errors. Asymptotic normalities of the proposed estimators for both the parametric and nonparametric parts are established. To achieve sparsity when there exist irrelevant variables in the model, two variable selection procedures based on adaptive penalty are developed to select important parametric covariates as well as significant nonparametric functions. Moreover, both these two variable selection procedures are demonstrated to enjoy the oracle property under some regularity conditions. Some Monte Carlo simulations are conducted to assess the finite sample performance of the proposed estimators, and a real-data example is used to illustrate the application of the proposed methods.  相似文献   

16.
Quantile regression is a flexible approach to assessing covariate effects on failure time, which has attracted considerable interest in survival analysis. When the dimension of covariates is much larger than the sample size, feature screening and variable selection become extremely important and indispensable. In this article, we introduce a new feature screening method for ultrahigh dimensional censored quantile regression. The proposed method can work for a general class of survival models, allow for heterogeneity of data and enjoy desirable properties including the sure screening property and the ranking consistency property. Moreover, an iterative version of screening algorithm has also been proposed to accommodate more complex situations. Monte Carlo simulation studies are designed to evaluate the finite sample performance under different model settings. We also illustrate the proposed methods through an empirical analysis.  相似文献   

17.
Abstract

In this article, we focus on the variable selection for semiparametric varying coefficient partially linear model with response missing at random. Variable selection is proposed based on modal regression, where the non parametric functions are approximated by B-spline basis. The proposed procedure uses SCAD penalty to realize variable selection of parametric and nonparametric components simultaneously. Furthermore, we establish the consistency, the sparse property and asymptotic normality of the resulting estimators. The penalty estimation parameters value of the proposed method is calculated by EM algorithm. Simulation studies are carried out to assess the finite sample performance of the proposed variable selection procedure.  相似文献   

18.
The beta regression models are commonly used by practitioners to model variables that assume values in the standard unit interval (0, 1). In this paper, we consider the issue of variable selection for beta regression models with varying dispersion (VBRM), in which both the mean and the dispersion depend upon predictor variables. Based on a penalized likelihood method, the consistency and the oracle property of the penalized estimators are established. Following the coordinate descent algorithm idea of generalized linear models, we develop new variable selection procedure for the VBRM, which can efficiently simultaneously estimate and select important variables in both mean model and dispersion model. Simulation studies and body fat data analysis are presented to illustrate the proposed methods.  相似文献   

19.
In this paper, we focus on the variable selection for the semiparametric regression model with longitudinal data when some covariates are measured with errors. A new bias-corrected variable selection procedure is proposed based on the combination of the quadratic inference functions and shrinkage estimations. With appropriate selection of the tuning parameters, we establish the consistency and asymptotic normality of the resulting estimators. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedure. We further illustrate the proposed procedure with an application.  相似文献   

20.
Abstract

In this article, we propose a new penalized-likelihood method to conduct model selection for finite mixture of regression models. The penalties are imposed on mixing proportions and regression coefficients, and hence order selection of the mixture and the variable selection in each component can be simultaneously conducted. The consistency of order selection and the consistency of variable selection are investigated. A modified EM algorithm is proposed to maximize the penalized log-likelihood function. Numerical simulations are conducted to demonstrate the finite sample performance of the estimation procedure. The proposed methodology is further illustrated via real data analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号