首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When variable selection with stepwise regression and model fitting are conducted on the same data set, competition for inclusion in the model induces a selection bias in coefficient estimators away from zero. In proportional hazards regression with right-censored data, selection bias inflates the absolute value of parameter estimate of selected parameters, while the omission of other variables may shrink coefficients toward zero. This paper explores the extent of the bias in parameter estimates from stepwise proportional hazards regression and proposes a bootstrap method, similar to those proposed by Miller (Subset Selection in Regression, 2nd edn. Chapman & Hall/CRC, 2002) for linear regression, to correct for selection bias. We also use bootstrap methods to estimate the standard error of the adjusted estimators. Simulation results show that substantial biases could be present in uncorrected stepwise estimators and, for binary covariates, could exceed 250% of the true parameter value. The simulations also show that the conditional mean of the proposed bootstrap bias-corrected parameter estimator, given that a variable is selected, is moved closer to the unconditional mean of the standard partial likelihood estimator in the chosen model, and to the population value of the parameter. We also explore the effect of the adjustment on estimates of log relative risk, given the values of the covariates in a selected model. The proposed method is illustrated with data sets in primary biliary cirrhosis and in multiple myeloma from the Eastern Cooperative Oncology Group.  相似文献   

2.
An algorithm is presented for calculating the power for the logistic and proportional hazards models in which some of the covariates are discrete and the remainders are multivariate normal. The mean and covariance matrix of the multivariate normal covariates may depend on the discrete covariates.

The algorithm, which finds the power of the Wald test, uses the result that the information matrix can be calculated using univariate numerical integration even when there are several continuous covariates. The algorithm is checked using simulation and in certain situations gives more accurate results than current methods which are based on simple formulae. The algorithm is used to explore properties of these models, in particular, the power gain from a prognostic covariate in the analysis of a clinical trial or observational study. The methods can be extended to determine power for other generalized linear models.  相似文献   

3.
We develop a saddlepoint-based method for generating small sample confidence bands for the population surviival function from the Kaplan-Meier (KM), the product limit (PL), and Abdushukurov-Cheng-Lin (ACL) survival function estimators, under the proportional hazards model. In the process we derive the exact distribution of these estimators and developed mid-ppopulation tolerance bands for said estimators. Our saddlepoint method depends upon the Mellin transform of the zero-truncated survival estimator which we derive for the KM, PL, and ACL estimators. These transforms are inverted via saddlepoint approximations to yield highly accurate approximations to the cumulative distribution functions of the respective cumulative hazard function estimators and these distribution functions are then inverted to produce our saddlepoint confidence bands. For the KM, PL and ACL estimators we compare our saddlepoint confidence bands with those obtained from competing large sample methods as well as those obtained from the exact distribution. In our simulation studies we found that the saddlepoint confidence bands are very close to the confidence bands derived from the exact distribution, while being much easier to compute, and outperform the competing large sample methods in terms of coverage probability.  相似文献   

4.
The maximum likelihood estimator (MLE) for the survival function STunder the proportional hazards model of censorship is derived and shown to differ from the Abdushukurov-Cheng-Lin estimator when the class of allowable distributions includes all continuous and discrete distributions. The estimators are compared via an example. The MLE is calculated using a Newton-Raphson iterative procedure and implemented via a FORTRAN algorithm.  相似文献   

5.
ABSTRACT

Competing risks data are common in medical research in which lifetime of individuals can be classified in terms of causes of failure. In survival or reliability studies, it is common that the patients (objects) are subjected to both left censoring and right censoring, which is refereed as double censoring. The analysis of doubly censored competing risks data in presence of covariates is the objective of this study. We propose a proportional hazards model for the analysis of doubly censored competing risks data, using the hazard rate functions of Gray (1988 Gray, R.J. (1988). A class of k-sample tests for comparing the cumulative incidence of a competing risk. Ann. Statist. 16:11411154.[Crossref], [Web of Science ®] [Google Scholar]), while focusing upon one major cause of failure. We derive estimators for regression parameter vector and cumulative baseline cause specific hazard rate function. Asymptotic properties of the estimators are discussed. A simulation study is conducted to assess the finite sample behavior of the proposed estimators. We illustrate the method using a real life doubly censored competing risks data.  相似文献   

6.
ABSTRACT

We investigated the empirical likelihood inference approach under a general class of semiparametric hazards regression models with survival data subject to right-censoring. An empirical likelihood ratio for the full 2p regression parameters involved in the model is obtained. We showed that it converged weakly to a random variable which could be written as a weighted sum of 2p independent chi-squared variables with one degree of freedom. Using this, we could construct a confidence region for parameters. We also suggested an adjusted version for the preceding statistic, whose limit followed a standard chi-squared distribution with 2p degrees of freedom.  相似文献   

7.
In the analysis of survival data, when nonproportional hazards are encountered, the Cox model is often extended to allow for a time-dependent effect by accommodating a varying coefficient. This extension, however, cannot resolve the nonproportionality caused by heterogeneity. In contrast, the heteroscedastic hazards regression (HHR) model is capable of modeling heterogeneity and thus can be applied when dealing with nonproportional hazards. In this paper, we study the application of the HHR model possibly equipped with varying coefficients. An LRR (logarithm of relative risk) plot is suggested when investigating the need to impose varying coefficients. Constancy and degeneration in the plot are used as diagnostic criteria. For the HHR model, a ‘piecewise effect’ (PE) analysis and an ‘average effect’ (AE) analysis are introduced. For the PE setting, we propose a score-type test for covariate-specific varying coefficients. The Stanford Heart Transplant data are analyzed for illustration. In the case of degeneration being destroyed by a polynomial covariate, piecewise constancy and/or monotonicity of the LRRs is considered as an alternative criterion based on the PE analysis. Finally, under the framework of the varying-coefficient HHR model, the meanings of the PE and AE analyses, along with their dynamic interpretation, are discussed.  相似文献   

8.
A new test of the proportional hazards assumption in the Cox model is proposed. The idea is based on Neyman’s smooth tests. The Cox model with proportional hazards (i.e. time-constant covariate effects) is embedded in a model with a smoothly time-varying covariate effect that is expressed as a combination of some basis functions (e.g., Legendre polynomials, cosines). Then the smooth test is the score test for significance of these artificial covariates. Furthermore, we apply a modification of Schwarz’s selection rule to choosing the dimension of the smooth model (the number of the basis functions). The score test is then used in the selected model. In a simulation study, we compare the proposed tests with standard tests based on the score process.  相似文献   

9.
There has been extensive interest in discussing inference methods for survival data when some covariates are subject to measurement error. It is known that standard inferential procedures produce biased estimation if measurement error is not taken into account. With the Cox proportional hazards model a number of methods have been proposed to correct bias induced by measurement error, where the attention centers on utilizing the partial likelihood function. It is also of interest to understand the impact on estimation of the baseline hazard function in settings with mismeasured covariates. In this paper we employ a weakly parametric form for the baseline hazard function and propose simple unbiased estimating functions for estimation of parameters. The proposed method is easy to implement and it reveals the connection between the naive method ignoring measurement error and the corrected method with measurement error accounted for. Simulation studies are carried out to evaluate the performance of the estimators as well as the impact of ignoring measurement error in covariates. As an illustration we apply the proposed methods to analyze a data set arising from the Busselton Health Study [Knuiman, M.W., Cullent, K.J., Bulsara, M.K., Welborn, T.A., Hobbs, M.S.T., 1994. Mortality trends, 1965 to 1989, in Busselton, the site of repeated health surveys and interventions. Austral. J. Public Health 18, 129–135].  相似文献   

10.
Summary. The maximum likelihood estimator (MLE) for the proportional hazards model with partly interval-censored data is studied. Under appropriate regularity conditions, the MLEs of the regression parameter and the cumulative hazard function are shown to be consistent and asymptotically normal. Two methods to estimate the variance–covariance matrix of the MLE of the regression parameter are considered, based on a generalized missing information principle and on a generalized profile information procedure. Simulation studies show that both methods work well in terms of the bias and variance for samples of moderate size. An example illustrates the methods.  相似文献   

11.
We discuss findings regarding the permutation distributions of treatment effect estimators in the proportional hazards model. For fixed sample size n, we will prove that all uncensored and untied event times yield the same permutation distribution of treatment effect estimators in the proportional hazards model. In other words this distribution is irrelevant with respect to the actual event times. We will show several uniqueness properties under different conditions. These properties are useful for small sample permutation tests and also helpful to large sample cases.  相似文献   

12.
Median survival times and their associated confidence intervals are often used to summarize the survival outcome of a group of patients in clinical trials with failure-time endpoints. Although there is an extensive literature on this topic for the case in which the patients come from a homogeneous population, few papers have dealt with the case in which covariates are present as in the proportional hazards model. In this paper we propose a new approach to this problem and demonstrate its advantages over existing methods, not only for the proportional hazards model but also for the widely studied cases where covariates are absent and where there is no censoring. As an illustration, we apply it to the Stanford Heart Transplant data. Asymptotic theory and simulation studies show that the proposed method indeed yields confidence intervals and bands with accurate coverage errors.  相似文献   

13.
Sensitivity analysis for unmeasured confounding should be reported more often, especially in observational studies. In the standard Cox proportional hazards model, this requires substantial assumptions and can be computationally difficult. The marginal structural Cox proportional hazards model (Cox proportional hazards MSM) with inverse probability weighting has several advantages compared to the standard Cox model, including situations with only one assessment of exposure (point exposure) and time-independent confounders. We describe how simple computations provide sensitivity for unmeasured confounding in a Cox proportional hazards MSM with point exposure. This is achieved by translating the general framework for sensitivity analysis for MSMs by Robins and colleagues to survival time data. Instead of bias-corrected observations, we correct the hazard rate to adjust for a specified amount of unmeasured confounding. As an additional bonus, the Cox proportional hazards MSM is robust against bias from differential loss to follow-up. As an illustration, the Cox proportional hazards MSM was applied in a reanalysis of the association between smoking and depression in a population-based cohort of Norwegian adults. The association was moderately sensitive for unmeasured confounding.  相似文献   

14.
ABSTRACT

The generalized case-cohort design is widely used in large cohort studies to reduce the cost and improve the efficiency. Taking prior information of parameters into consideration in modeling process can further raise the inference efficiency. In this paper, we consider fitting proportional hazards model with constraints for generalized case-cohort studies. We establish a working likelihood function for the estimation of model parameters. The asymptotic properties of the proposed estimator are derived via the Karush-Kuhn-Tucker conditions, and their finite properties are assessed by simulation studies. A modified minorization-maximization algorithm is developed for the numerical calculation of the constrained estimator. An application to a Wilms tumor study demonstrates the utility of the proposed method in practice.  相似文献   

15.
An approach for removing boundary bias in nonparametric density esti-mation is considered. The technique is based on suitable finite-dimensional projections in Hilbert space. Applications to boundary bias removal with kernel and trigonometric series estimators are presented.  相似文献   

16.
17.
The use of the Cox proportional hazards regression model is wide-spread. A key assumption of the model is that of proportional hazards. Analysts frequently test the validity of this assumption using statistical significance testing. However, the statistical power of such assessments is frequently unknown. We used Monte Carlo simulations to estimate the statistical power of two different methods for detecting violations of this assumption. When the covariate was binary, we found that a model-based method had greater power than a method based on cumulative sums of martingale residuals. Furthermore, the parametric nature of the distribution of event times had an impact on power when the covariate was binary. Statistical power to detect a strong violation of the proportional hazards assumption was low to moderate even when the number of observed events was high. In many data sets, power to detect a violation of this assumption is likely to be low to modest.  相似文献   

18.
In this article, based on generalized order statistics from a family of proportional hazard rate model, we use a statistical test to generate a class of preliminary test estimators and shrinkage preliminary test estimators for the proportionality parameter. These estimators are compared under Pitman measure of closeness (PMC) as well as MSE criteria. Although the PMC suffers from non transitivity, in the first class of estimators, it has the transitivity property and we obtain the Pitman-closest estimator. Analytical and graphical methods are used to show the range of parameter in which preliminary test and shrinkage preliminary test estimators perform better than their competitor estimators. Results reveal that when the prior information is not too far from its real value, the proposed estimators are superior based on both mentioned criteria.  相似文献   

19.
Conventionally, a ridge parameter is estimated as a function of regression parameters based on ordinary least squares. In this article, we proposed an iterative procedure instead of the one-step or conventional ridge method. Additionally, we construct an indicator that measures the potential degree of improvement in mean squared error when ridge estimates are employed. Simulations show that our methods are appropriate for a wide class of non linear models including generalized linear models and proportional hazards (PHs) regressions. The method is applied to a PH regression with highly collinear covariates in a cancer recurrence study.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号