首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate two options for performing Bayesian inference on spatial log-Gaussian Cox processes assuming a spatially continuous latent field: Markov chain Monte Carlo (MCMC) and the integrated nested Laplace approximation (INLA). We first describe the device of approximating a spatially continuous Gaussian field by a Gaussian Markov random field on a discrete lattice, and present a simulation study showing that, with careful choice of parameter values, small neighbourhood sizes can give excellent approximations. We then introduce the spatial log-Gaussian Cox process and describe MCMC and INLA methods for spatial prediction within this model class. We report the results of a simulation study in which we compare the Metropolis-adjusted Langevin Algorithm (MALA) and the technique of approximating the continuous latent field by a discrete one, followed by approximate Bayesian inference via INLA over a selection of 18 simulated scenarios. The results question the notion that the latter technique is both significantly faster and more robust than MCMC in this setting; 100,000 iterations of the MALA algorithm running in 20 min on a desktop PC delivered greater predictive accuracy than the default INLA strategy, which ran in 4 min and gave comparative performance to the full Laplace approximation which ran in 39 min.  相似文献   

2.
Summary.  Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regression, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and geoadditive models. We consider approximate Bayesian inference in a popular subset of structured additive regression models, latent Gaussian models , where the latent field is Gaussian, controlled by a few hyperparameters and with non-Gaussian response variables. The posterior marginals are not available in closed form owing to the non-Gaussian response variables. For such models, Markov chain Monte Carlo methods can be implemented, but they are not without problems, in terms of both convergence and computational time. In some practical applications, the extent of these problems is such that Markov chain Monte Carlo sampling is simply not an appropriate tool for routine analysis. We show that, by using an integrated nested Laplace approximation and its simplified version, we can directly compute very accurate approximations to the posterior marginals. The main benefit of these approximations is computational: where Markov chain Monte Carlo algorithms need hours or days to run, our approximations provide more precise estimates in seconds or minutes. Another advantage with our approach is its generality, which makes it possible to perform Bayesian analysis in an automatic, streamlined way, and to compute model comparison criteria and various predictive measures so that models can be compared and the model under study can be challenged.  相似文献   

3.
Hidden Markov random field models provide an appealing representation of images and other spatial problems. The drawback is that inference is not straightforward for these models as the normalisation constant for the likelihood is generally intractable except for very small observation sets. Variational methods are an emerging tool for Bayesian inference and they have already been successfully applied in other contexts. Focusing on the particular case of a hidden Potts model with Gaussian noise, we show how variational Bayesian methods can be applied to hidden Markov random field inference. To tackle the obstacle of the intractable normalising constant for the likelihood, we explore alternative estimation approaches for incorporation into the variational Bayes algorithm. We consider a pseudo-likelihood approach as well as the more recent reduced dependence approximation of the normalisation constant. To illustrate the effectiveness of these approaches we present empirical results from the analysis of simulated datasets. We also analyse a real dataset and compare results with those of previous analyses as well as those obtained from the recently developed auxiliary variable MCMC method and the recursive MCMC method. Our results show that the variational Bayesian analyses can be carried out much faster than the MCMC analyses and produce good estimates of model parameters. We also found that the reduced dependence approximation of the normalisation constant outperformed the pseudo-likelihood approximation in our analysis of real and synthetic datasets.  相似文献   

4.
The Integrated Nested Laplace Approximation (INLA) has established itself as a widely used method for approximate inference on Bayesian hierarchical models which can be represented as a latent Gaussian model (LGM). INLA is based on producing an accurate approximation to the posterior marginal distributions of the parameters in the model and some other quantities of interest by using repeated approximations to intermediate distributions and integrals that appear in the computation of the posterior marginals. INLA focuses on models whose latent effects are a Gaussian Markov random field. For this reason, we have explored alternative ways of expanding the number of possible models that can be fitted using the INLA methodology. In this paper, we present a novel approach that combines INLA and Markov chain Monte Carlo (MCMC). The aim is to consider a wider range of models that can be fitted with INLA only when some of the parameters of the model have been fixed. We show how new values of these parameters can be drawn from their posterior by using conditional models fitted with INLA and standard MCMC algorithms, such as Metropolis–Hastings. Hence, this will extend the use of INLA to fit models that can be expressed as a conditional LGM. Also, this new approach can be used to build simpler MCMC samplers for complex models as it allows sampling only on a limited number of parameters in the model. We will demonstrate how our approach can extend the class of models that could benefit from INLA, and how the R-INLA package will ease its implementation. We will go through simple examples of this new approach before we discuss more advanced applications with datasets taken from the relevant literature. In particular, INLA within MCMC will be used to fit models with Laplace priors in a Bayesian Lasso model, imputation of missing covariates in linear models, fitting spatial econometrics models with complex nonlinear terms in the linear predictor and classification of data with mixture models. Furthermore, in some of the examples we could exploit INLA within MCMC to make joint inference on an ensemble of model parameters.  相似文献   

5.
Markov chain Monte Carlo (MCMC) implementations of Bayesian inference for latent spatial Gaussian models are very computationally intensive, and restrictions on storage and computation time are limiting their application to large problems. Here we propose various parallel MCMC algorithms for such models. The algorithms' performance is discussed with respect to a simulation study, which demonstrates the increase in speed with which the algorithms explore the posterior distribution as a function of the number of processors. We also discuss how feasible problem size is increased by use of these algorithms.  相似文献   

6.
We consider importance sampling (IS) type weighted estimators based on Markov chain Monte Carlo (MCMC) targeting an approximate marginal of the target distribution. In the context of Bayesian latent variable models, the MCMC typically operates on the hyperparameters, and the subsequent weighting may be based on IS or sequential Monte Carlo (SMC), but allows for multilevel techniques as well. The IS approach provides a natural alternative to delayed acceptance (DA) pseudo-marginal/particle MCMC, and has many advantages over DA, including a straightforward parallelization and additional flexibility in MCMC implementation. We detail minimal conditions which ensure strong consistency of the suggested estimators, and provide central limit theorems with expressions for asymptotic variances. We demonstrate how our method can make use of SMC in the state space models context, using Laplace approximations and time-discretized diffusions. Our experimental results are promising and show that the IS-type approach can provide substantial gains relative to an analogous DA scheme, and is often competitive even without parallelization.  相似文献   

7.
Approximate Bayesian Inference for Survival Models   总被引:1,自引:0,他引:1  
Abstract. Bayesian analysis of time‐to‐event data, usually called survival analysis, has received increasing attention in the last years. In Cox‐type models it allows to use information from the full likelihood instead of from a partial likelihood, so that the baseline hazard function and the model parameters can be jointly estimated. In general, Bayesian methods permit a full and exact posterior inference for any parameter or predictive quantity of interest. On the other side, Bayesian inference often relies on Markov chain Monte Carlo (MCMC) techniques which, from the user point of view, may appear slow at delivering answers. In this article, we show how a new inferential tool named integrated nested Laplace approximations can be adapted and applied to many survival models making Bayesian analysis both fast and accurate without having to rely on MCMC‐based inference.  相似文献   

8.
Non-Gaussian spatial responses are usually modeled using spatial generalized linear mixed model with spatial random effects. The likelihood function of this model cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. There are numerical ways to maximize the likelihood function, such as Monte Carlo Expectation Maximization and Quadrature Pairwise Expectation Maximization algorithms. They can be applied but may in such cases be computationally very slow or even prohibitive. Gauss–Hermite quadrature approximation only suitable for low-dimensional latent variables and its accuracy depends on the number of quadrature points. Here, we propose a new approximate pairwise maximum likelihood method to the inference of the spatial generalized linear mixed model. This approximate method is fast and deterministic, using no sampling-based strategies. The performance of the proposed method is illustrated through two simulation examples and practical aspects are investigated through a case study on a rainfall data set.  相似文献   

9.
On Block Updating in Markov Random Field Models for Disease Mapping   总被引:3,自引:0,他引:3  
Gaussian Markov random field (GMRF) models are commonly used to model spatial correlation in disease mapping applications. For Bayesian inference by MCMC, so far mainly single-site updating algorithms have been considered. However, convergence and mixing properties of such algorithms can be extremely poor due to strong dependencies of parameters in the posterior distribution. In this paper, we propose various block sampling algorithms in order to improve the MCMC performance. The methodology is rather general, allows for non-standard full conditionals, and can be applied in a modular fashion in a large number of different scenarios. For illustration we consider three different applications: two formulations for spatial modelling of a single disease (with and without additional unstructured parameters respectively), and one formulation for the joint analysis of two diseases. The results indicate that the largest benefits are obtained if parameters and the corresponding hyperparameter are updated jointly in one large block. Implementation of such block algorithms is relatively easy using methods for fast sampling of Gaussian Markov random fields ( Rue, 2001 ). By comparison, Monte Carlo estimates based on single-site updating can be rather misleading, even for very long runs. Our results may have wider relevance for efficient MCMC simulation in hierarchical models with Markov random field components.  相似文献   

10.
During recent years, analysts have been relying on approximate methods of inference to estimate multilevel models for binary or count data. In an earlier study of random-intercept models for binary outcomes we used simulated data to demonstrate that one such approximation, known as marginal quasi-likelihood, leads to a substantial attenuation bias in the estimates of both fixed and random effects whenever the random effects are non-trivial. In this paper, we fit three-level random-intercept models to actual data for two binary outcomes, to assess whether refined approximation procedures, namely penalized quasi-likelihood and second-order improvements to marginal and penalized quasi-likelihood, also underestimate the underlying parameters. The extent of the bias is assessed by two standards of comparison: exact maximum likelihood estimates, based on a Gauss–Hermite numerical quadrature procedure, and a set of Bayesian estimates, obtained from Gibbs sampling with diffuse priors. We also examine the effectiveness of a parametric bootstrap procedure for reducing the bias. The results indicate that second-order penalized quasi-likelihood estimates provide a considerable improvement over the other approximations, but all the methods of approximate inference result in a substantial underestimation of the fixed and random effects when the random effects are sizable. We also find that the parametric bootstrap method can eliminate the bias but is computationally very intensive.  相似文献   

11.
Models for geostatistical data introduce spatial dependence in the covariance matrix of location-specific random effects. This is usually defined to be a parametric function of the distances between locations. Bayesian formulations of such models overcome asymptotic inference and estimation problems involved in maximum likelihood-based approaches and can be fitted using Markov chain Monte Carlo (MCMC) simulation. The MCMC implementation, however, requires repeated inversions of the covariance matrix which makes the problem computationally intensive, especially for large number of locations. In the present work, we propose to convert the spatial covariance matrix to a sparse matrix and compare a number of numerical algorithms especially suited within the MCMC framework in order to accelerate large matrix inversion. The algorithms are assessed empirically on simulated datasets of different size and sparsity. We conclude that the band solver applied after ordering the distance matrix reduces the computational time in inverting covariance matrices substantially.  相似文献   

12.
Simulation-based inference for partially observed stochastic dynamic models is currently receiving much attention due to the fact that direct computation of the likelihood is not possible in many practical situations. Iterated filtering methodologies enable maximization of the likelihood function using simulation-based sequential Monte Carlo filters. Doucet et al. (2013) developed an approximation for the first and second derivatives of the log likelihood via simulation-based sequential Monte Carlo smoothing and proved that the approximation has some attractive theoretical properties. We investigated an iterated smoothing algorithm carrying out likelihood maximization using these derivative approximations. Further, we developed a new iterated smoothing algorithm, using a modification of these derivative estimates, for which we establish both theoretical results and effective practical performance. On benchmark computational challenges, this method beat the first-order iterated filtering algorithm. The method’s performance was comparable to a recently developed iterated filtering algorithm based on an iterated Bayes map. Our iterated smoothing algorithm and its theoretical justification provide new directions for future developments in simulation-based inference for latent variable models such as partially observed Markov process models.  相似文献   

13.
We consider fast lattice approximation methods for a solution of a certain stochastic non‐local pseudodifferential operator equation. This equation defines a Matérn class random field. We approximate the pseudodifferential operator with truncated Taylor expansion, spectral domain error functional minimization and rounding approximations. This allows us to construct Gaussian Markov random field approximations. We construct lattice approximations with finite‐difference methods. We show that the solutions can be constructed with overdetermined systems of stochastic matrix equations with sparse matrices, and we solve the system of equations with a sparse Cholesky decomposition. We consider convergence of the truncated Taylor approximation by studying band‐limited Matérn fields. We consider the convergence of the discrete approximations to the continuous limits. Finally, we study numerically the accuracy of different approximation methods with an interpolation problem.  相似文献   

14.
Abstract. Deterministic Bayesian inference for latent Gaussian models has recently become available using integrated nested Laplace approximations (INLA). Applying the INLA‐methodology, marginal estimates for elements of the latent field can be computed efficiently, providing relevant summary statistics like posterior means, variances and pointwise credible intervals. In this article, we extend the use of INLA to joint inference and present an algorithm to derive analytical simultaneous credible bands for subsets of the latent field. The algorithm is based on approximating the joint distribution of the subsets by multivariate Gaussian mixtures. Additionally, we present a saddlepoint approximation to compute Bayesian contour probabilities, representing the posterior support of fixed parameter vectors of interest. We perform a simulation study and apply the given methods to two real examples.  相似文献   

15.
Summary.  Gaussian Markov random-field (GMRF) models are frequently used in a wide variety of applications. In most cases parts of the GMRF are observed through mutually independent data; hence the full conditional of the GMRF, a hidden GMRF (HGMRF), is of interest. We are concerned with the case where the likelihood is non-Gaussian, leading to non-Gaussian HGMRF models. Several researchers have constructed block sampling Markov chain Monte Carlo schemes based on approximations of the HGMRF by a GMRF, using a second-order expansion of the log-density at or near the mode. This is possible as the GMRF approximation can be sampled exactly with a known normalizing constant. The Markov property of the GMRF approximation yields computational efficiency.The main contribution in the paper is to go beyond the GMRF approximation and to construct a class of non-Gaussian approximations which adapt automatically to the particular HGMRF that is under study. The accuracy can be tuned by intuitive parameters to nearly any precision. These non-Gaussian approximations share the same computational complexity as those which are based on GMRFs and can be sampled exactly with computable normalizing constants. We apply our approximations in spatial disease mapping and model-based geostatistical models with different likelihoods, obtain procedures for block updating and construct Metropolized independence samplers.  相似文献   

16.
Generalized linear models (GLMs) with error-in-covariates are useful in epidemiological research due to the ubiquity of non-normal response variables and inaccurate measurements. The link function in GLMs is chosen by the user depending on the type of response variable, frequently the canonical link function. When covariates are measured with error, incorrect inference can be made, compounded by incorrect choice of link function. In this article we propose three flexible approaches for handling error-in-covariates and estimating an unknown link simultaneously. The first approach uses a fully Bayesian (FB) hierarchical framework, treating the unobserved covariate as a latent variable to be integrated over. The second and third are approximate Bayesian approach which use a Laplace approximation to marginalize the variables measured with error out of the likelihood. Our simulation results show support that the FB approach is often a better choice than the approximate Bayesian approaches for adjusting for measurement error, particularly when the measurement error distribution is misspecified. These approaches are demonstrated on an application with binary response.  相似文献   

17.
We describe a novel deterministic approximate inference technique for conditionally Gaussian state space models, i.e. state space models where the latent state consists of both multinomial and Gaussian distributed variables. The method can be interpreted as a smoothing pass and iteration scheme symmetric to an assumed density filter. It improves upon previously proposed smoothing passes by not making more approximations than implied by the projection onto the chosen parametric form, the assumed density. Experimental results show that the novel scheme outperforms these alternative deterministic smoothing passes. Comparisons with sampling methods suggest that the performance does not degrade with longer sequences.  相似文献   

18.
The computational demand required to perform inference using Markov chain Monte Carlo methods often obstructs a Bayesian analysis. This may be a result of large datasets, complex dependence structures, or expensive computer models. In these instances, the posterior distribution is replaced by a computationally tractable approximation, and inference is based on this working model. However, the error that is introduced by this practice is not well studied. In this paper, we propose a methodology that allows one to examine the impact on statistical inference by quantifying the discrepancy between the intractable and working posterior distributions. This work provides a structure to analyse model approximations with regard to the reliability of inference and computational efficiency. We illustrate our approach through a spatial analysis of yearly total precipitation anomalies where covariance tapering approximations are used to alleviate the computational demand associated with inverting a large, dense covariance matrix.  相似文献   

19.
Looking at predictive accuracy is a traditional method for comparing models. A natural method for approximating out-of-sample predictive accuracy is leave-one-out cross-validation (LOOCV)—we alternately hold out each case from a full dataset and then train a Bayesian model using Markov chain Monte Carlo without the held-out case; at last we evaluate the posterior predictive distribution of all cases with their actual observations. However, actual LOOCV is time-consuming. This paper introduces two methods, namely iIS and iWAIC, for approximating LOOCV with only Markov chain samples simulated from a posterior based on a full dataset. iIS and iWAIC aim at improving the approximations given by importance sampling (IS) and WAIC in Bayesian models with possibly correlated latent variables. In iIS and iWAIC, we first integrate the predictive density over the distribution of the latent variables associated with the held-out without reference to its observation, then apply IS and WAIC approximations to the integrated predictive density. We compare iIS and iWAIC with other approximation methods in three kinds of models: finite mixture models, models with correlated spatial effects, and a random effect logistic regression model. Our empirical results show that iIS and iWAIC give substantially better approximates than non-integrated IS and WAIC and other methods.  相似文献   

20.
Distance sampling and capture–recapture are the two most widely used wildlife abundance estimation methods. capture–recapture methods have only recently incorporated models for spatial distribution and there is an increasing tendency for distance sampling methods to incorporated spatial models rather than to rely on partly design-based spatial inference. In this overview we show how spatial models are central to modern distance sampling and that spatial capture–recapture models arise as an extension of distance sampling methods. Depending on the type of data recorded, they can be viewed as particular kinds of hierarchical binary regression, Poisson regression, survival or time-to-event models, with individuals’ locations as latent variables and a spatial model as the latent variable distribution. Incorporation of spatial models in these two methods provides new opportunities for drawing explicitly spatial inferences. Areas of likely future development include more sophisticated spatial and spatio-temporal modelling of individuals’ locations and movements, new methods for integrating spatial capture–recapture and other kinds of ecological survey data, and methods for dealing with the recapture uncertainty that often arise when “capture” consists of detection by a remote device like a camera trap or microphone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号