首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantile regression (QR) is a natural alternative for depicting the impact of covariates on the conditional distributions of a outcome variable instead of the mean. In this paper, we investigate Bayesian regularized QR for the linear models with autoregressive errors. LASSO-penalized type priors are forced on regression coefficients and autoregressive parameters of the model. Gibbs sampler algorithm is employed to draw the full posterior distributions of unknown parameters. Finally, the proposed procedures are illustrated by some simulation studies and applied to a real data analysis of the electricity consumption.  相似文献   

2.
Abstract

Handling data with the nonignorably missing mechanism is still a challenging problem in statistics. In this paper, we develop a fully Bayesian adaptive Lasso approach for quantile regression models with nonignorably missing response data, where the nonignorable missingness mechanism is specified by a logistic regression model. The proposed method extends the Bayesian Lasso by allowing different penalization parameters for different regression coefficients. Furthermore, a hybrid algorithm that combined the Gibbs sampler and Metropolis-Hastings algorithm is implemented to simulate the parameters from posterior distributions, mainly including regression coefficients, shrinkage coefficients, parameters in the non-ignorable missing models. Finally, some simulation studies and a real example are used to illustrate the proposed methodology.  相似文献   

3.
The authors propose methods for Bayesian inference for generalized linear models with missing covariate data. They specify a parametric distribution for the covariates that is written as a sequence of one‐dimensional conditional distributions. They propose an informative class of joint prior distributions for the regression coefficients and the parameters arising from the covariate distributions. They examine the properties of the proposed prior and resulting posterior distributions. They also present a Bayesian criterion for comparing various models, and a calibration is derived for it. A detailed simulation is conducted and two real data sets are examined to demonstrate the methodology.  相似文献   

4.
In this article, we develop a Bayesian variable selection method that concerns selection of covariates in the Poisson change-point regression model with both discrete and continuous candidate covariates. Ranging from a null model with no selected covariates to a full model including all covariates, the Bayesian variable selection method searches the entire model space, estimates posterior inclusion probabilities of covariates, and obtains model averaged estimates on coefficients to covariates, while simultaneously estimating a time-varying baseline rate due to change-points. For posterior computation, the Metropolis-Hastings within partially collapsed Gibbs sampler is developed to efficiently fit the Poisson change-point regression model with variable selection. We illustrate the proposed method using simulated and real datasets.  相似文献   

5.
In this article, we highlight some interesting facts about Bayesian variable selection methods for linear regression models in settings where the design matrix exhibits strong collinearity. We first demonstrate via real data analysis and simulation studies that summaries of the posterior distribution based on marginal and joint distributions may give conflicting results for assessing the importance of strongly correlated covariates. The natural question is which one should be used in practice. The simulation studies suggest that posterior inclusion probabilities and Bayes factors that evaluate the importance of correlated covariates jointly are more appropriate, and some priors may be more adversely affected in such a setting. To obtain a better understanding behind the phenomenon, we study some toy examples with Zellner’s g-prior. The results show that strong collinearity may lead to a multimodal posterior distribution over models, in which joint summaries are more appropriate than marginal summaries. Thus, we recommend a routine examination of the correlation matrix and calculation of the joint inclusion probabilities for correlated covariates, in addition to marginal inclusion probabilities, for assessing the importance of covariates in Bayesian variable selection.  相似文献   

6.
Variable selection over a potentially large set of covariates in a linear model is quite popular. In the Bayesian context, common prior choices can lead to a posterior expectation of the regression coefficients that is a sparse (or nearly sparse) vector with a few nonzero components, those covariates that are most important. This article extends the “global‐local” shrinkage idea to a scenario where one wishes to model multiple response variables simultaneously. Here, we have developed a variable selection method for a K‐outcome model (multivariate regression) that identifies the most important covariates across all outcomes. The prior for all regression coefficients is a mean zero normal with coefficient‐specific variance term that consists of a predictor‐specific factor (shared local shrinkage parameter) and a model‐specific factor (global shrinkage term) that differs in each model. The performance of our modeling approach is evaluated through simulation studies and a data example.  相似文献   

7.
Principal component regression uses principal components (PCs) as regressors. It is particularly useful in prediction settings with high-dimensional covariates. The existing literature treating of Bayesian approaches is relatively sparse. We introduce a Bayesian approach that is robust to outliers in both the dependent variable and the covariates. Outliers can be thought of as observations that are not in line with the general trend. The proposed approach automatically penalises these observations so that their impact on the posterior gradually vanishes as they move further and further away from the general trend, corresponding to a concept in Bayesian statistics called whole robustness. The predictions produced are thus consistent with the bulk of the data. The approach also exploits the geometry of PCs to efficiently identify those that are significant. Individual predictions obtained from the resulting models are consolidated according to model-averaging mechanisms to account for model uncertainty. The approach is evaluated on real data and compared to its nonrobust Bayesian counterpart, the traditional frequentist approach and a commonly employed robust frequentist method. Detailed guidelines to automate the entire statistical procedure are provided. All required code is made available, see ArXiv:1711.06341.  相似文献   

8.
The additive Cox model is flexible and powerful for modelling the dynamic changes of regression coefficients in the survival analysis. This paper is concerned with feature screening for the additive Cox model with ultrahigh-dimensional covariates. The proposed screening procedure can effectively identify active predictors. That is, with probability tending to one, the selected variable set includes the actual active predictors. In order to carry out the proposed procedure, we propose an effective algorithm and establish the ascent property of the proposed algorithm. We further prove that the proposed procedure possesses the sure screening property. Furthermore, we examine the finite sample performance of the proposed procedure via Monte Carlo simulations, and illustrate the proposed procedure by a real data example.  相似文献   

9.
Bridge penalized regression has many desirable statistical properties such as unbiasedness, sparseness as well as ‘oracle’. In Bayesian framework, bridge regularized penalty can be implemented based on generalized Gaussian distribution (GGD) prior. In this paper, we incorporate Bayesian bridge-randomized penalty and its adaptive version into the quantile regression (QR) models with autoregressive perturbations to conduct Bayesian penalization estimation. Employing the working likelihood of the asymmetric Laplace distribution (ALD) perturbations, the Bayesian joint hierarchical models are established. Based on the mixture representations of the ALD and generalized Gaussian distribution (GGD) priors of coefficients, the hybrid algorithms based on Gibbs sampler and Metropolis-Hasting sampler are provided to conduct fully Bayesian posterior estimation. Finally, the proposed Bayesian procedures are illustrated by some simulation examples and applied to a real data application of the electricity consumption.  相似文献   

10.
Partially linear varying coefficient models (PLVCMs) with heteroscedasticity are considered in this article. Based on composite quantile regression, we develop a weighted composite quantile regression (WCQR) to estimate the non parametric varying coefficient functions and the parametric regression coefficients. The WCQR is augmented using a data-driven weighting scheme. Moreover, the asymptotic normality of proposed estimators for both the parametric and non parametric parts are studied explicitly. In addition, by comparing the asymptotic relative efficiency theoretically and numerically, WCQR method all outperforms the CQR method and some other estimate methods. To achieve sparsity with high-dimensional covariates, we develop a variable selection procedure to select significant parametric components for the PLVCM and prove the method possessing the oracle property. Both simulations and data analysis are conducted to illustrate the finite-sample performance of the proposed methods.  相似文献   

11.
Longitudinal data are commonly modeled with the normal mixed-effects models. Most modeling methods are based on traditional mean regression, which results in non robust estimation when suffering extreme values or outliers. Median regression is also not a best choice to estimation especially for non normal errors. Compared to conventional modeling methods, composite quantile regression can provide robust estimation results even for non normal errors. In this paper, based on a so-called pseudo composite asymmetric Laplace distribution (PCALD), we develop a Bayesian treatment to composite quantile regression for mixed-effects models. Furthermore, with the location-scale mixture representation of the PCALD, we establish a Bayesian hierarchical model and achieve the posterior inference of all unknown parameters and latent variables using Markov Chain Monte Carlo (MCMC) method. Finally, this newly developed procedure is illustrated by some Monte Carlo simulations and a case analysis of HIV/AIDS clinical data set.  相似文献   

12.
The paper proposes a Bayesian quantile regression method for hierarchical linear models. Existing approaches of hierarchical linear quantile regression models are scarce and most of them were not from the perspective of Bayesian thoughts, which is important for hierarchical models. In this paper, based on Bayesian theories and Markov Chain Monte Carlo methods, we introduce Asymmetric Laplace distributed errors to simulate joint posterior distributions of population parameters and across-unit parameters and then derive their posterior quantile inferences. We run a simulation as the proposed method to examine the effects on parameters induced by units and quantile levels; the method is also applied to study the relationship between Chinese rural residents' family annual income and their cultivated areas. Both the simulation and real data analysis indicate that the method is effective and accurate.  相似文献   

13.
In this article, we consider Bayesian inferences for the heteroscedastic nonparametric regression models, when both the mean function and variance function are unknown. We demonstrated consistency of posterior distributions for this model using priors induced by B-splines expansion, treating both random and deterministic covariates in a uniform manner.  相似文献   

14.
Quantile regression is a flexible approach to assessing covariate effects on failure time, which has attracted considerable interest in survival analysis. When the dimension of covariates is much larger than the sample size, feature screening and variable selection become extremely important and indispensable. In this article, we introduce a new feature screening method for ultrahigh dimensional censored quantile regression. The proposed method can work for a general class of survival models, allow for heterogeneity of data and enjoy desirable properties including the sure screening property and the ranking consistency property. Moreover, an iterative version of screening algorithm has also been proposed to accommodate more complex situations. Monte Carlo simulation studies are designed to evaluate the finite sample performance under different model settings. We also illustrate the proposed methods through an empirical analysis.  相似文献   

15.
Count data with excess zeros are widely encountered in the fields of biomedical, medical, public health and social survey, etc. Zero-inflated Poisson (ZIP) regression models with mixed effects are useful tools for analyzing such data, in which covariates are usually incorporated in the model to explain inter-subject variation and normal distribution is assumed for both random effects and random errors. However, in many practical applications, such assumptions may be violated as the data often exhibit skewness and some covariates may be measured with measurement errors. In this paper, we deal with these issues simultaneously by developing a Bayesian joint hierarchical modeling approach. Specifically, by treating intercepts and slopes in logistic and Poisson regression as random, a flexible two-level ZIP regression model is proposed, where a covariate process with measurement errors is established and a skew-t-distribution is considered for both random errors and random effects. Under the Bayesian framework, model selection is carried out using deviance information criterion (DIC) and a goodness-of-fit statistics is also developed for assessing the plausibility of the posited model. The main advantage of our method is that it allows for more robustness and correctness for investigating heterogeneity from different levels, while accommodating the skewness and measurement errors simultaneously. An application to Shanghai Youth Fitness Survey is used as an illustrate example. Through this real example, it is showed that our approach is of interest and usefulness for applications.  相似文献   

16.
Bayesian statistical inference relies on the posterior distribution. Depending on the model, the posterior can be more or less difficult to derive. In recent years, there has been a lot of interest in complex settings where the likelihood is analytically intractable. In such situations, approximate Bayesian computation (ABC) provides an attractive way of carrying out Bayesian inference. For obtaining reliable posterior estimates however, it is important to keep the approximation errors small in ABC. The choice of an appropriate set of summary statistics plays a crucial role in this effort. Here, we report the development of a new algorithm that is based on least angle regression for choosing summary statistics. In two population genetic examples, the performance of the new algorithm is better than a previously proposed approach that uses partial least squares.  相似文献   

17.
In this paper, we adopt the Bayesian approach to expectile regression employing a likelihood function that is based on an asymmetric normal distribution. We demonstrate that improper uniform priors for the unknown model parameters yield a proper joint posterior. Three simulated data sets were generated to evaluate the proposed method which show that Bayesian expectile regression performs well and has different characteristics comparing with Bayesian quantile regression. We also apply this approach into two real data analysis.  相似文献   

18.
Abstract. We propose a Bayesian semiparametric methodology for quantile regression modelling. In particular, working with parametric quantile regression functions, we develop Dirichlet process mixture models for the error distribution in an additive quantile regression formulation. The proposed non‐parametric prior probability models allow the shape of the error density to adapt to the data and thus provide more reliable predictive inference than models based on parametric error distributions. We consider extensions to quantile regression for data sets that include censored observations. Moreover, we employ dependent Dirichlet processes to develop quantile regression models that allow the error distribution to change non‐parametrically with the covariates. Posterior inference is implemented using Markov chain Monte Carlo methods. We assess and compare the performance of our models using both simulated and real data sets.  相似文献   

19.
ABSTRACT

In this paper, we consider an effective Bayesian inference for censored Student-t linear regression model, which is a robust alternative to the usual censored Normal linear regression model. Based on the mixture representation of the Student-t distribution, we propose a non-iterative Bayesian sampling procedure to obtain independently and identically distributed samples approximately from the observed posterior distributions, which is different from the iterative Markov Chain Monte Carlo algorithm. We conduct model selection and influential analysis using the posterior samples to choose the best fitted model and to detect latent outliers. We illustrate the performance of the procedure through simulation studies, and finally, we apply the procedure to two real data sets, one is the insulation life data with right censoring and the other is the wage rates data with left censoring, and we get some interesting results.  相似文献   

20.
While most regression models focus on explaining distributional aspects of one single response variable alone, interest in modern statistical applications has recently shifted towards simultaneously studying multiple response variables as well as their dependence structure. A particularly useful tool for pursuing such an analysis are copula-based regression models since they enable the separation of the marginal response distributions and the dependence structure summarised in a specific copula model. However, so far copula-based regression models have mostly been relying on two-step approaches where the marginal distributions are determined first whereas the copula structure is studied in a second step after plugging in the estimated marginal distributions. Moreover, the parameters of the copula are mostly treated as a constant not related to covariates and most regression specifications for the marginals are restricted to purely linear predictors. We therefore propose simultaneous Bayesian inference for both the marginal distributions and the copula using computationally efficient Markov chain Monte Carlo simulation techniques. In addition, we replace the commonly used linear predictor by a generic structured additive predictor comprising for example nonlinear effects of continuous covariates, spatial effects or random effects and furthermore allow to make the copula parameters covariate-dependent. To facilitate Bayesian inference, we construct proposal densities for a Metropolis–Hastings algorithm relying on quadratic approximations to the full conditionals of regression coefficients avoiding manual tuning. The performance of the resulting Bayesian estimates is evaluated in simulations comparing our approach with penalised likelihood inference, studying the choice of a specific copula model based on the deviance information criterion, and comparing a simultaneous approach with a two-step procedure. Furthermore, the flexibility of Bayesian conditional copula regression models is illustrated in two applications on childhood undernutrition and macroecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号