首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we discuss the derivation of the first and second moments for the proposed small area estimators under a multivariate linear model for repeated measures data. The aim is to use these moments to estimate the mean-squared errors (MSE) for the predicted small area means as a measure of precision. At the first stage, we derive the MSE when the covariance matrices are known. At the second stage, a method based on parametric bootstrap is proposed for bias correction and for prediction error that reflects the uncertainty when the unknown covariance is replaced by its suitable estimator.  相似文献   

2.
Repeated categorical outcomes frequently occur in clinical trials. Muenz and Rubinstein (1985) presented Markov chain models to analyze binary repeated data in a breast cancer study. We extend their method to the setting when more than one repeated outcome variable is of interest. In a randomized clinical trial of breast cancer, we investigate the dependency of toxicities on predictor variables and the relationship among multiple toxic effects.  相似文献   

3.
During recent years, analysts have been relying on approximate methods of inference to estimate multilevel models for binary or count data. In an earlier study of random-intercept models for binary outcomes we used simulated data to demonstrate that one such approximation, known as marginal quasi-likelihood, leads to a substantial attenuation bias in the estimates of both fixed and random effects whenever the random effects are non-trivial. In this paper, we fit three-level random-intercept models to actual data for two binary outcomes, to assess whether refined approximation procedures, namely penalized quasi-likelihood and second-order improvements to marginal and penalized quasi-likelihood, also underestimate the underlying parameters. The extent of the bias is assessed by two standards of comparison: exact maximum likelihood estimates, based on a Gauss–Hermite numerical quadrature procedure, and a set of Bayesian estimates, obtained from Gibbs sampling with diffuse priors. We also examine the effectiveness of a parametric bootstrap procedure for reducing the bias. The results indicate that second-order penalized quasi-likelihood estimates provide a considerable improvement over the other approximations, but all the methods of approximate inference result in a substantial underestimation of the fixed and random effects when the random effects are sizable. We also find that the parametric bootstrap method can eliminate the bias but is computationally very intensive.  相似文献   

4.
Summary.  Repeated measures and repeated events data have a hierarchical structure which can be analysed by using multilevel models. A growth curve model is an example of a multilevel random-coefficients model, whereas a discrete time event history model for recurrent events can be fitted as a multilevel logistic regression model. The paper describes extensions to the basic growth curve model to handle auto-correlated residuals, multiple-indicator latent variables and correlated growth processes, and event history models for correlated event processes. The multilevel approach to the analysis of repeated measures data is contrasted with structural equation modelling. The methods are illustrated in analyses of children's growth, changes in social and political attitudes, and the interrelationship between partnership transitions and childbearing.  相似文献   

5.
For multivariate probit models, Spiess and Tutz suggest three alternative performance measures, which are all based on the decomposition of the variation. The multivariate probit model can be seen as a special case of the discrete copula model. This paper proposes some new measures based on the value of the likelihood function and the prediction-realization table. In addition, it generalizes the measures from Spiess and Tutz for the discrete copula model. Results of a simulation study designed to compare the different measures in various situations are presented.  相似文献   

6.
A convenient recursive computational method for repeated measures analysis, provided by McGilchrist and Cullis (1990), has been extended by the authors to heterogeneous error structures and also to the repeated measures model with random coefficients. The approach is outlined briefly in this paper. A computing program for the approach has been written and used to obtain results for simulated data having various error structures. A summary of the results is given. The computing program together with some subroutines is available from the authors.  相似文献   

7.
Under the assumption of multivariate normality the likelihood ratio test is derived to test a hypothesis for Kronecker product structure on a covariance matrix in the context of multivariate repeated measures data. Although the proposed hypothesis testing can be computationally performed by indirect use of Proc Mixed of SAS, the Proc Mixed algorithm often fails to converge. We provide an alternative algorithm. The algorithm is illustrated with two real data sets. A simulation study is also conducted for the purpose of sample size consideration.  相似文献   

8.
The occurrence of missing data is an often unavoidable consequence of repeated measures studies. Fortunately, multivariate general linear models such as growth curve models and linear mixed models with random effects have been well developed to analyze incomplete normally-distributed repeated measures data. Most statistical methods have assumed that the missing data occur at random. This assumption may include two types of missing data mechanism: missing completely at random (MCAR) and missing at random (MAR) in the sense of Rubin (1976). In this paper, we develop a test procedure for distinguishing these two types of missing data mechanism for incomplete normally-distributed repeated measures data. The proposed test is similar in spiril to the test of Park and Davis (1992). We derive the test for incomplete normally-distribrlted repeated measures data using linear mixed models. while Park and Davis (1992) cleirved thr test for incomplete repeatctl categorical data in the framework of Grizzle Starmer. and Koch (1969). Thr proposed procedure can be applied easily to any other multivariate general linear model which allow for missing data. The test is illustrated using the hip-replacernent patient.data from Crowder and Hand (1990).  相似文献   

9.
Longitudinal studies occcur frequently in many different disciplines. To fully utilize the potential value of the information contained in a longitudinal data, various multivariate linear models have been proposed. The methodology and analysis are somewhat unique in their own ways and their relationships are not well understood and presented. This article describes a general multivaritate linear model for longitudinal data and attempts to provide a constructive formulation of the components in the mean response profile. The objective is to point out the extension and connections of some well-known models that have been obscured by different areas of application. More imporiantly, the model is expressed in a unified regression form from the subject matter considerations. Such an approach is simpler and more intuitive than other ways to modeling and parameter estimation. As a cmsequeace the analyses of the general class cf models for longitudional data can be casily implemented with standard software.  相似文献   

10.
This paper studies outlier detection for multilevel models. Approximate formulae for outlier detection in estimating both fixed and random parameters under the mean-shift outlier model are derived, and a test for multiple outliers is proposed. These results can be used to detect outlier units at any levels. Detection of outlier units related to random parts is also studied. Analysis of an example shows that the proposed method is effective in identifying outliers in multilevel models.  相似文献   

11.
A log linear multivariate paired comparison model for ties is proposed in which the cell probabilities under independence are those given by Davidson (1970). Altham's (1970) generalized measure of association (iv) is used to compare the association structure between two models, one having full, the other having reduced association structure. Based on the model with reduced association structure, the analysis of data from a consumer preference experiment is presented.  相似文献   

12.
Models for fitting longitudinal binary responses are explored by using a panel study of voting intentions. A standard multilevel repeated measures logistic model is shown to be inadequate owing to a substantial proportion of respondents who maintain a constant response over time. A multivariate binary response model is shown to be a better fit to the data.  相似文献   

13.
A general class of multivariate regression models is considered for repeated measurements with discrete and continuous outcome variables. The proposed model is based on the seemingly unrelated regression model (Zellner, 1962) and an extension of the model of Park and Woolson(1992). The regression parameters of the model are consistently estimated using the two-stage least squares method. When the out come variables are multivariate normal, the two-stage estimator reduces to Zellner’s two-stage estimator. As a special case, we consider the marginal distribution described by Liang and Zeger (1986). Under this this distributional assumption, we show that the two-stage estimator has similar asymptotic properties and comparable small sample properties to Liang and Zeger's estimator. Since the proposed approach is based on the least squares method, however, any distributional assumption is not required for variables outcome variables. As a result, the proposed estimator is more robust to the marginal distribution of outcomes.  相似文献   

14.
ABSTRACT

In modelling repeated count outcomes, generalized linear mixed-effects models are commonly used to account for within-cluster correlations. However, inconsistent results are frequently generated by various statistical R packages and SAS procedures, especially in case of a moderate or strong within-cluster correlation or overdispersion. We investigated the underlying numerical approaches and statistical theories on which these packages and procedures are built. We then compared the performance of these statistical packages and procedures by simulating both Poisson-distributed and overdispersed count data. The SAS NLMIXED procedure outperformed the others procedures in all settings.  相似文献   

15.
16.
Longitudinal imaging studies have moved to the forefront of medical research due to their ability to characterize spatio-temporal features of biological structures across the lifespan. Valid inference in longitudinal imaging requires enough flexibility of the covariance model to allow reasonable fidelity to the true pattern. On the other hand, the existence of computable estimates demands a parsimonious parameterization of the covariance structure. Separable (Kronecker product) covariance models provide one such parameterization in which the spatial and temporal covariances are modeled separately. However, evaluating the validity of this parameterization in high dimensions remains a challenge. Here we provide a scientifically informed approach to assessing the adequacy of separable (Kronecker product) covariance models when the number of observations is large relative to the number of independent sampling units (sample size). We address both the general case, in which unstructured matrices are considered for each covariance model, and the structured case, which assumes a particular structure for each model. For the structured case, we focus on the situation where the within-subject correlation is believed to decrease exponentially in time and space as is common in longitudinal imaging studies. However, the provided framework equally applies to all covariance patterns used within the more general multivariate repeated measures context. Our approach provides useful guidance for high dimension, low-sample size data that preclude using standard likelihood-based tests. Longitudinal medical imaging data of caudate morphology in schizophrenia illustrate the approaches appeal.  相似文献   

17.
In this article, small area estimation under a multivariate linear model for repeated measures data is considered. The proposed model aims to get a model which borrows strength both across small areas and over time. The model accounts for repeated surveys, grouped response units, and random effects variations. Estimation of model parameters is discussed within a likelihood based approach. Prediction of random effects, small area means across time points, and per group units are derived. A parametric bootstrap method is proposed for estimating the mean squared error of the predicted small area means. Results are supported by a simulation study.  相似文献   

18.
No satisfactory goodness of fit test is available for multilevel survival data which occur when survival data are clustered or hierarchical in nature. Hence the aim of this research is to develop a new goodness of fit test for multilevel survival data and to examine the properties of the newly developed test. Simulation studies were carried out to evaluate the type ? error and the power. The results showed that the type I error holds for every combination tested and that the test is powerful against the alternative hypothesis of nonproportional hazards for all combinations tested.  相似文献   

19.
It is essential to test the goodness of fit of the model before making inferences based on it. Multilevel modeling of ordinal categorical responses is not as developed as for continuous responses. Assessing model adequacy in terms of the goodness of fit with ordinal categorical responses is still being developed and no satisfactory tests are available so far. As a consequence of that, this study concentrates on developing such a goodness of fit test for Multilevel Proportional Odds models and to study the properties of the test.  相似文献   

20.
It is well known that the log-likelihood function for samples coming from normal mixture distributions may present spurious maxima and singularities. For this reason here we reformulate some Hathaways results and we propose two constrained estimation procedures for multivariate normal mixture modelling according to the likelihood approach. Their perfomances are illustrated on the grounds of some numerical simulations based on the EM algorithm. A comparison between multivariate normal mixtures and the hot-deck approach in missing data imputation is also considered.Salvatore Ingrassia: S. Ingrassia carried out the research as part of the project Metodi Statistici e Reti Neuronali per lAnalisi di Dati Complessi (PRIN 2000, resp. G. Lunetta).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号