首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we present a framework of estimating patterned covariance of interest in the multivariate linear models. The main idea in it is to estimate a patterned covariance by minimizing a trace distance function between outer product of residuals and its expected value. The proposed framework can provide us explicit estimators, called outer product least-squares estimators, for parameters in the patterned covariance of the multivariate linear model without or with restrictions on regression coefficients. The outer product least-squares estimators enjoy the desired properties in finite and large samples, including unbiasedness, invariance, consistency and asymptotic normality. We still apply the framework to three special situations where their patterned covariances are the uniform correlation, a generalized uniform correlation and a general q-dependence structure, respectively. Simulation studies for three special cases illustrate that the proposed method is a competent alternative of the maximum likelihood method in finite size samples.  相似文献   

2.
Summary.  Meteorological and environmental data that are collected at regular time intervals on a fixed monitoring network can be usefully studied combining ideas from multiple time series and spatial statistics, particularly when there are little or no missing data. This work investigates methods for modelling such data and ways of approximating the associated likelihood functions. Models for processes on the sphere crossed with time are emphasized, especially models that are not fully symmetric in space–time. Two approaches to obtaining such models are described. The first is to consider a rotated version of fully symmetric models for which we have explicit expressions for the covariance function. The second is based on a representation of space–time covariance functions that is spectral in just the time domain and is shown to lead to natural partially nonparametric asymmetric models on the sphere crossed with time. Various models are applied to a data set of daily winds at 11 sites in Ireland over 18 years. Spectral and space–time domain diagnostic procedures are used to assess the quality of the fits. The spectral-in-time modelling approach is shown to yield a good fit to many properties of the data and can be applied in a routine fashion relative to finding elaborate parametric models that describe the space–time dependences of the data about as well.  相似文献   

3.
ABSTRACT

Consider the problem of estimating the positions of a set of targets in a multidimensional Euclidean space from distances reported by a number of observers when the observers do not know their own positions in the space. Each observer reports the distance from the observer to each target plus a random error. This statistical problem is the basic model for the various forms of what is called multidimensional unfolding in the psychometric literature. Multidimensional unfolding methodology as developed in the field of cognitive psychology is basically a statistical estimation problem where the data structure is a set of measures that are monotonic functions of Euclidean distances between a number of observers and targets in a multidimensional space. The new method presented in this article deals with estimating the target locations and the observer positions when the observations are functions of the squared distances between observers and targets observed with an additive random error in a two-dimensional space. The method provides robust estimates of the target locations in a multidimensional space for the parametric structure of the data generating model presented in the article. The method also yields estimates of the orientation of the coordinate system and the mean and variances of the observer locations. The mean and the variances are not estimated by standard unfolding methods which yield targets maps that are invariant to a rotation of the coordinate system. The data is transformed so that the nonlinearity due to the squared observer locations is removed. The sampling properties of the estimates are derived from the asymptotic variances of the additive errors of a maximum likelihood factor analysis of the sample covariance matrix of the transformed data augmented with bootstrapping. The robustness of the new method is tested using artificial data. The method is applied to a 2001 survey data set from Turkey to provide a real data example.  相似文献   

4.
This paper introduces a new information-theoretic measure of complexity called ICOMP as a decision rule for model selection and evaluation for multivariate linear models. The development of ICOMP is based on the generalization and utilization of the covariance complexity index of van Emden (1971) in estimation of the multivariate linear model. ICOMP is motivated by Akaike's (1973) Information Criterion (AIC), but it is a different procedure than AIC. In linear or nonlinear statistical models ICOMP uses an information-based characterization of: (i) the covariance matrix properties of the parameter estimates of a model starting from their finite sampling distributions, and (ii) the complexity of the inverse-Fisher information matrix (i-FIM) as a new criterion of achievable accuracy of the model As a result, it provides a trade-off between the accuracy of the parameter estimates and the interaction of the residuals of a model via the measure of complexity of their respective covariances. It controls the risks of both insufficient and overparameterized models, and incorporates the assumption of dependence and the independence of the residuals in one criterion function. A model with minimum ICOMP is chosen to be the best model among all possible competing alternative models. ICOMP relieves the researcher of any need to consider the parameter dimension of a model explicitly. A real numerical example is shown in subset selection of variables in multivariate regression analysis to demonstrate the utility and versatility of the new approach.  相似文献   

5.
We propose a new model for conditional covariances based on predetermined idiosyncratic shocks as well as macroeconomic and own information instruments. The specification ensures positive definiteness by construction, is unique within the class of linear functions for our covariance decomposition, and yields a simple yet rich model of covariances. We introduce a property, invariance to variate order, that assures estimation is not impacted by a simple reordering of the variates in the system. Simulation results using realized covariances show smaller mean absolute errors (MAE) and root mean square errors (RMSE) for every element of the covariance matrix relative to a comparably specified BEKK model with own information instruments. We also find a smaller mean absolute percentage error (MAPE) and root mean square percentage error (RMSPE) for the entire covariance matrix. Supplementary materials for practitioners as well as all Matlab code used in the article are available online.  相似文献   

6.
In many applications, the parameters of interest are estimated by solving non‐smooth estimating functions with U‐statistic structure. Because the asymptotic covariances matrix of the estimator generally involves the underlying density function, resampling methods are often used to bypass the difficulty of non‐parametric density estimation. Despite its simplicity, the resultant‐covariance matrix estimator depends on the nature of resampling, and the method can be time‐consuming when the number of replications is large. Furthermore, the inferences are based on the normal approximation that may not be accurate for practical sample sizes. In this paper, we propose a jackknife empirical likelihood‐based inferential procedure for non‐smooth estimating functions. Standard chi‐square distributions are used to calculate the p‐value and to construct confidence intervals. Extensive simulation studies and two real examples are provided to illustrate its practical utilities.  相似文献   

7.
In this work it is shown how the k-means method for clustering objects can be applied in the context of statistical shape analysis. Because the choice of the suitable distance measure is a key issue for shape analysis, the Hartigan and Wong k-means algorithm is adapted for this situation. Simulations on controlled artificial data sets demonstrate that distances on the pre-shape spaces are more appropriate than the Euclidean distance on the tangent space. Finally, results are presented of an application to a real problem of oceanography, which in fact motivated the current work.  相似文献   

8.
This article considers an approach to estimating and testing a new Kronecker product covariance structure for three-level (multiple time points (p), multiple sites (u), and multiple response variables (q)) multivariate data. Testing of such covariance structure is potentially important for high dimensional multi-level multivariate data. The hypothesis testing procedure developed in this article can not only test the hypothesis for three-level multivariate data, but also can test many different hypotheses, such as blocked compound symmetry, for two-level multivariate data as special cases. The tests are implemented with two real data sets.  相似文献   

9.
We establish a central limit theorem for multivariate summary statistics of nonstationary α‐mixing spatial point processes and a subsampling estimator of the covariance matrix of such statistics. The central limit theorem is crucial for establishing asymptotic properties of estimators in statistics for spatial point processes. The covariance matrix subsampling estimator is flexible and model free. It is needed, for example, to construct confidence intervals and ellipsoids based on asymptotic normality of estimators. We also provide a simulation study investigating an application of our results to estimating functions.  相似文献   

10.
ABSTRACT

Many financial decisions such as portfolio allocation, risk management, option pricing and hedge strategies are based on the forecast of the conditional variances, covariances and correlations of financial returns. Although the decisions depend on the forecasts covariance matrix little is known about effects of outliers on the uncertainty associated with these forecasts. In this paper we analyse these effects on the context of dynamic conditional correlation models when the uncertainty is measured using bootstrap methods. We also propose a bootstrap procedure to obtain forecast densities for return, volatilities, conditional correlation and Value-at-Risk that is robust to outliers. The results are illustrated with simulated and real data.  相似文献   

11.
Abstract

In analyzing two multivariate normal data sets, the assumption about equality of covariance matrices is usually used as a default for doing subsequence inferences. If this equality doesn’t hold, later inferences will be more complex and usually approximate. If one detects some identical components between two decomposed non equal covariance matrices and uses this extra information, one expects that subsequence inferences can be more accurately performed. For this purpose, in this article we consider some statistical tests about the equality of components of decomposed covariance matrices of two multivariate normal populations. Our emphasis is on the spectral decomposition of these matrices. Hypotheses about the equalities of sizes, shapes, and set of directions as components of these two covariance matrices are tested by the likelihood ratio test (LRT). Some simulation studies are carried out to investigate the accuracy and power of the LRT. Finally, analyses of two real data sets are illustrated.  相似文献   

12.
In this paper, sequential procedures for the surveillance of the covariance matrices of multivariate nonlinear time series are introduced. Two different types of control charts are proposed. The first type is based on the exponential smoothing of each component of a local measure for the covariances. The control statistic is equal to the Mahalanobis distance of this quantity with its in-control mean. In our second approach, the Mahalanobis distance is first determined and after that it is exponentially smoothed. We discuss three examples of local measures.

Several properties of the proposed schemes are discussed assuming the target process to be generated by a multivariate GARCH(1, 1) model. The generalization to the family of spherical distributions allows the modelling of frequently observed fat tails in financial data. Some results of an extensive Monte Carlo simulation study are provided in order to judge the performance of the presented control schemes. As a performance measure we use the average run length. An empirical example illustrates the importance of the fast detection of the changes in the covariance structure of the returns of financial assets.  相似文献   

13.
Building new and flexible classes of nonseparable spatio-temporal covariances and variograms has resulted a key point of research in the last years. The goal of this paper is to present an up-to-date overview of recent spatio-temporal covariance models taking into account the problem of spatial anisotropy. The resulting structures are proved to have certain interesting mathematical properties, together with a considerable applicability. In particular, we focus on the problem of modelling anisotropy through isotropy within components. We present the Bernstein class, and a generalisation of Gneiting’s approach (2002a) to obtain new classes of space–time covariance functions which are spatially anisotropic. We also discuss some methods for building covariance functions that attain negative values. We finally present several differentiation and integration operators acting on particular space–time covariance classes.   相似文献   

14.
ABSTRACT

We develop a new score-driven model for the joint dynamics of fat-tailed realized covariance matrix observations and daily returns. The score dynamics for the unobserved true covariance matrix are robust to outliers and incidental large observations in both types of data by assuming a matrix-F distribution for the realized covariance measures and a multivariate Student's t distribution for the daily returns. The filter for the unknown covariance matrix has a computationally efficient matrix formulation, which proves beneficial for estimation and simulation purposes. We formulate parameter restrictions for stationarity and positive definiteness. Our simulation study shows that the new model is able to deal with high-dimensional settings (50 or more) and captures unobserved volatility dynamics even if the model is misspecified. We provide an empirical application to daily equity returns and realized covariance matrices up to 30 dimensions. The model statistically and economically outperforms competing multivariate volatility models out-of-sample. Supplementary materials for this article are available online.  相似文献   

15.
A Gaussian process (GP) can be thought of as an infinite collection of random variables with the property that any subset, say of dimension n, of these variables have a multivariate normal distribution of dimension n, mean vector β and covariance matrix Σ [O'Hagan, A., 1994, Kendall's Advanced Theory of Statistics, Vol. 2B, Bayesian Inference (John Wiley & Sons, Inc.)]. The elements of the covariance matrix are routinely specified through the multiplication of a common variance by a correlation function. It is important to use a correlation function that provides a valid covariance matrix (positive definite). Further, it is well known that the smoothness of a GP is directly related to the specification of its correlation function. Also, from a Bayesian point of view, a prior distribution must be assigned to the unknowns of the model. Therefore, when using a GP to model a phenomenon, the researcher faces two challenges: the need of specifying a correlation function and a prior distribution for its parameters. In the literature there are many classes of correlation functions which provide a valid covariance structure. Also, there are many suggestions of prior distributions to be used for the parameters involved in these functions. We aim to investigate how sensitive the GPs are to the (sometimes arbitrary) choices of their correlation functions. For this, we have simulated 25 sets of data each of size 64 over the square [0, 5]×[0, 5] with a specific correlation function and fixed values of the GP's parameters. We then fit different correlation structures to these data, with different prior specifications and check the performance of the adjusted models using different model comparison criteria.  相似文献   

16.
ABSTRACT

This work treats non-parametric estimation of multivariate probability mass functions, using multivariate discrete associated kernels. We propose a Bayesian local approach to select the matrix of bandwidths considering the multivariate Dirac Discrete Uniform and the product of binomial kernels, and treating the bandwidths as a diagonal matrix of parameters with some prior distribution. The performances of this approach and the cross-validation method are compared using simulations and real count data sets. The obtained results show that the Bayes local method performs better than cross-validation in terms of integrated squared error.  相似文献   

17.
Abstract

In this article, dependence structure of a class of symmetric distributions is considered. Let X and Y be two n-dimensional random vectors having such distributions. We investigate conditions on the generators of densities of X and Y such that X is MTP2, and X and Y can be compared in the multivariate likelihood ratio order. Nonnegativity of the covariance between functions of two adjacent order statistics of X is also given.  相似文献   

18.
The purpose of this paper is to jointly monitor the mean vector and the covariance matrix of multivariate nonlinear times series. The underlying target process is assumed to be a constant conditional correlation process Bollerslev (Rev Econ Stat 72:498–505, 1990) or a dynamic conditional correlation model Engle (J Bus Econ Stat 20:339–350, 2002). We introduce several EWMA and CUSUM control charts. These control schemes are based on univariate EWMA statistics, multivariate EWMA recursions, and different types of cumulative sums. The recursions are applied to local measures for means and covariances, e.g. the present observations and the conditional covariances. Further, they are applied to means and covariances of residuals. The control statistics are obtained by computing the Mahalanobis distance between the EWMA or CUSUM statistics and their expectations if no change occurs. Via Monte Carlo simulation the performance of the proposed charts is compared. Our empirical study illustrates an application of these control procedures to bivariate logarithmic returns of the European indices FTSE100 and DAX. In order to assess the performance of the introduced schemes we apply the average run length and the maximum conditional expected delay.  相似文献   

19.
A characterization of the distribution of the multivariate quadratic form given by X A X′, where X is a p × n normally distributed matrix and A is an n × n symmetric real matrix, is presented. We show that the distribution of the quadratic form is the same as the distribution of a weighted sum of non central Wishart distributed matrices. This is applied to derive the distribution of the sample covariance between the rows of X when the expectation is the same for every column and is estimated with the regular mean.  相似文献   

20.
Abstract

In this work, we propose beta prime kernel estimator for estimation of a probability density functions defined with nonnegative support. For the proposed estimator, beta prime probability density function used as a kernel. It is free of boundary bias and nonnegative with a natural varying shape. We obtained the optimal rate of convergence for the mean squared error (MSE) and the mean integrated squared error (MISE). Also, we use adaptive Bayesian bandwidth selection method with Lindley approximation for heavy tailed distributions and compare its performance with the global least squares cross-validation bandwidth selection method. Simulation studies are performed to evaluate the average integrated squared error (ISE) of the proposed kernel estimator against some asymmetric competitors using Monte Carlo simulations. Moreover, real data sets are presented to illustrate the findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号