首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantile regression has gained increasing popularity as it provides richer information than the regular mean regression, and variable selection plays an important role in the quantile regression model building process, as it improves the prediction accuracy by choosing an appropriate subset of regression predictors. Unlike the traditional quantile regression, we consider the quantile as an unknown parameter and estimate it jointly with other regression coefficients. In particular, we adopt the Bayesian adaptive Lasso for the maximum entropy quantile regression. A flat prior is chosen for the quantile parameter due to the lack of information on it. The proposed method not only addresses the problem about which quantile would be the most probable one among all the candidates, but also reflects the inner relationship of the data through the estimated quantile. We develop an efficient Gibbs sampler algorithm and show that the performance of our proposed method is superior than the Bayesian adaptive Lasso and Bayesian Lasso through simulation studies and a real data analysis.  相似文献   

2.
Regularization methods for simultaneous variable selection and coefficient estimation have been shown to be effective in quantile regression in improving the prediction accuracy. In this article, we propose the Bayesian bridge for variable selection and coefficient estimation in quantile regression. A simple and efficient Gibbs sampling algorithm was developed for posterior inference using a scale mixture of uniform representation of the Bayesian bridge prior. This is the first work to discuss regularized quantile regression with the bridge penalty. Both simulated and real data examples show that the proposed method often outperforms quantile regression without regularization, lasso quantile regression, and Bayesian lasso quantile regression.  相似文献   

3.
Abstract

This article presents a class of novel penalties that are defined under a unified framework, which includes lasso, SCAD and ridge as special cases, and novel functions, such as the asymmetric quantile check function. The proposed class of penalties is capable of producing alternative differentiable penalties to lasso. We mainly focus on this case and show its desirable properties, propose an efficient algorithm for the parameter estimation and prove the theoretical properties of the resulting estimators. Moreover, we exploit the differentiability of the penalty function by deriving a novel Generalized Information Criterion (GIC) for model selection. The method is implemented in the R package DLASSO freely available from CRAN, http://CRAN.R-project.org/package=DLASSO.  相似文献   

4.
Bridge penalized regression has many desirable statistical properties such as unbiasedness, sparseness as well as ‘oracle’. In Bayesian framework, bridge regularized penalty can be implemented based on generalized Gaussian distribution (GGD) prior. In this paper, we incorporate Bayesian bridge-randomized penalty and its adaptive version into the quantile regression (QR) models with autoregressive perturbations to conduct Bayesian penalization estimation. Employing the working likelihood of the asymmetric Laplace distribution (ALD) perturbations, the Bayesian joint hierarchical models are established. Based on the mixture representations of the ALD and generalized Gaussian distribution (GGD) priors of coefficients, the hybrid algorithms based on Gibbs sampler and Metropolis-Hasting sampler are provided to conduct fully Bayesian posterior estimation. Finally, the proposed Bayesian procedures are illustrated by some simulation examples and applied to a real data application of the electricity consumption.  相似文献   

5.
Semiparametric regression models with multiple covariates are commonly encountered. When there are covariates not associated with response variable, variable selection may lead to sparser models, more lucid interpretations and more accurate estimation. In this study, we adopt a sieve approach for the estimation of nonparametric covariate effects in semiparametric regression models. We adopt a two-step iterated penalization approach for variable selection. In the first step, a mixture of the Lasso and group Lasso penalties are employed to conduct the first-round variable selection and obtain the initial estimate. In the second step, a mixture of the weighted Lasso and weighted group Lasso penalties, with weights constructed using the initial estimate, are employed for variable selection. We show that the proposed iterated approach has the variable selection consistency property, even when number of unknown parameters diverges with sample size. Numerical studies, including simulation and analysis of a diabetes dataset, show satisfactory performance of the proposed approach.  相似文献   

6.
When employing model selection methods with oracle properties such as the smoothly clipped absolute deviation (SCAD) and the Adaptive Lasso, it is typical to estimate the smoothing parameter by m-fold cross-validation, for example, m = 10. In problems where the true regression function is sparse and the signals large, such cross-validation typically works well. However, in regression modeling of genomic studies involving Single Nucleotide Polymorphisms (SNP), the true regression functions, while thought to be sparse, do not have large signals. We demonstrate empirically that in such problems, the number of selected variables using SCAD and the Adaptive Lasso, with 10-fold cross-validation, is a random variable that has considerable and surprising variation. Similar remarks apply to non-oracle methods such as the Lasso. Our study strongly questions the suitability of performing only a single run of m-fold cross-validation with any oracle method, and not just the SCAD and Adaptive Lasso.  相似文献   

7.
In this article, the problem of parameter estimation and variable selection in the Tobit quantile regression model is considered. A Tobit quantile regression with the elastic net penalty from a Bayesian perspective is proposed. Independent gamma priors are put on the l1 norm penalty parameters. A novel aspect of the Bayesian elastic net Tobit quantile regression is to treat the hyperparameters of the gamma priors as unknowns and let the data estimate them along with other parameters. A Bayesian Tobit quantile regression with the adaptive elastic net penalty is also proposed. The Gibbs sampling computational technique is adapted to simulate the parameters from the posterior distributions. The proposed methods are demonstrated by both simulated and real data examples.  相似文献   

8.
When employing model selection methods with oracle properties such as the smoothly clipped absolute deviation (SCAD) and the Adaptive Lasso, it is typical to estimate the smoothing parameter by m-fold cross-validation, for example, m = 10. In problems where the true regression function is sparse and the signals large, such cross-validation typically works well. However, in regression modeling of genomic studies involving Single Nucleotide Polymorphisms (SNP), the true regression functions, while thought to be sparse, do not have large signals. We demonstrate empirically that in such problems, the number of selected variables using SCAD and the Adaptive Lasso, with 10-fold cross-validation, is a random variable that has considerable and surprising variation. Similar remarks apply to non-oracle methods such as the Lasso. Our study strongly questions the suitability of performing only a single run of m-fold cross-validation with any oracle method, and not just the SCAD and Adaptive Lasso.  相似文献   

9.
本文首次将Elastic Net这种用于高度相关变量的惩罚方法用于面板数据的贝叶斯分位数回归,并基于非对称Laplace先验分布推导所有参数的后验分布,进而构建Gibbs抽样。为了验证模型的有效性,本文将面板数据的贝叶斯Elastic Net分位数回归方法(BQR. EN)与面板数据的贝叶斯分位数回归方法(BQR)、面板数据的贝叶斯Lasso分位数回归方法(BLQR)、面板数据的贝叶斯自适应Lasso分位数回归方法(BALQR)进行了多种情形下的全方位比较,结果表明BQR. EN方法适用于具有高度相关性、数据维度很高和尖峰厚尾分布特征的数据。进一步地,本文就BQR. EN方法在不同扰动项假设、不同样本量的情形展开模拟比较,验证了新方法的稳健性和小样本特性。最后,本文选取互联网金融类上市公司经济增加值(EVA)作为实证研究对象,检验新方法在实际问题中的参数估计与变量选择能力,实证结果符合预期。  相似文献   

10.
One advantage of quantile regression, relative to the ordinary least-square (OLS) regression, is that the quantile regression estimates are more robust against outliers and non-normal errors in the response measurements. However, the relative efficiency of the quantile regression estimator with respect to the OLS estimator can be arbitrarily small. To overcome this problem, composite quantile regression methods have been proposed in the literature which are resistant to heavy-tailed errors or outliers in the response and at the same time are more efficient than the traditional single quantile-based quantile regression method. This paper studies the composite quantile regression from a Bayesian perspective. The advantage of the Bayesian hierarchical framework is that the weight of each component in the composite model can be treated as open parameter and automatically estimated through Markov chain Monte Carlo sampling procedure. Moreover, the lasso regularization can be naturally incorporated into the model to perform variable selection. The performance of the proposed method over the single quantile-based method was demonstrated via extensive simulations and real data analysis.  相似文献   

11.
In this paper, we consider the estimation problem of multiple conditional quantile functions with right censored survival data. To account for censoring in estimating a quantile function, weighted quantile regression (WQR) has been developed by using inverse-censoring-probability weights. However, the estimated quantile functions from the WQR often cross each other and consequently violate the basic properties of quantiles. To avoid quantile crossing, we propose non-crossing weighted multiple quantile regression (NWQR), which estimates multiple conditional quantile functions simultaneously. We further propose the adaptive sup-norm regularized NWQR (ANWQR) to perform simultaneous estimation and variable selection. The large sample properties of the NWQR and ANWQR estimators are established under certain regularity conditions. The proposed methods are evaluated through simulation studies and analysis of a real data set.  相似文献   

12.
Abstract

Handling data with the nonignorably missing mechanism is still a challenging problem in statistics. In this paper, we develop a fully Bayesian adaptive Lasso approach for quantile regression models with nonignorably missing response data, where the nonignorable missingness mechanism is specified by a logistic regression model. The proposed method extends the Bayesian Lasso by allowing different penalization parameters for different regression coefficients. Furthermore, a hybrid algorithm that combined the Gibbs sampler and Metropolis-Hastings algorithm is implemented to simulate the parameters from posterior distributions, mainly including regression coefficients, shrinkage coefficients, parameters in the non-ignorable missing models. Finally, some simulation studies and a real example are used to illustrate the proposed methodology.  相似文献   

13.
Longitudinal data are commonly modeled with the normal mixed-effects models. Most modeling methods are based on traditional mean regression, which results in non robust estimation when suffering extreme values or outliers. Median regression is also not a best choice to estimation especially for non normal errors. Compared to conventional modeling methods, composite quantile regression can provide robust estimation results even for non normal errors. In this paper, based on a so-called pseudo composite asymmetric Laplace distribution (PCALD), we develop a Bayesian treatment to composite quantile regression for mixed-effects models. Furthermore, with the location-scale mixture representation of the PCALD, we establish a Bayesian hierarchical model and achieve the posterior inference of all unknown parameters and latent variables using Markov Chain Monte Carlo (MCMC) method. Finally, this newly developed procedure is illustrated by some Monte Carlo simulations and a case analysis of HIV/AIDS clinical data set.  相似文献   

14.
Relative risks (RRs) are often considered as preferred measures of association in randomized controlled trials especially when the binary outcome of interest is common. To directly estimate RRs, log-binomial regression has been recommended. Although log-binomial regression is a special case of generalized linear models, it does not respect the natural parameter constraints, and maximum likelihood estimation is often subject to numerical instability that leads to convergence problems. Alternative methods for solving log-binomial regression convergence problems have been proposed. A Bayesian approach also was introduced, but the comparison between this method and frequentist methods has not been fully explored. We compared five frequentist and one Bayesian methods for estimating RRs under a variety of scenario. Based on our simulation study, there is not a method that can perform well based on different statistical properties, but COPY 1000 and modified log-Poisson regression can be considered in practice.  相似文献   

15.
Quantile regression, including median regression, as a more completed statistical model than mean regression, is now well known with its wide spread applications. Bayesian inference on quantile regression or Bayesian quantile regression has attracted much interest recently. Most of the existing researches in Bayesian quantile regression focus on parametric quantile regression, though there are discussions on different ways of modeling the model error by a parametric distribution named asymmetric Laplace distribution or by a nonparametric alternative named scale mixture asymmetric Laplace distribution. This paper discusses Bayesian inference for nonparametric quantile regression. This general approach fits quantile regression curves using piecewise polynomial functions with an unknown number of knots at unknown locations, all treated as parameters to be inferred through reversible jump Markov chain Monte Carlo (RJMCMC) of Green (Biometrika 82:711–732, 1995). Instead of drawing samples from the posterior, we use regression quantiles to create Markov chains for the estimation of the quantile curves. We also use approximate Bayesian factor in the inference. This method extends the work in automatic Bayesian mean curve fitting to quantile regression. Numerical results show that this Bayesian quantile smoothing technique is competitive with quantile regression/smoothing splines of He and Ng (Comput. Stat. 14:315–337, 1999) and P-splines (penalized splines) of Eilers and de Menezes (Bioinformatics 21(7):1146–1153, 2005).  相似文献   

16.
In regression scenarios there is a growing demand for information on the conditional distribution of the response beyond the mean. In this scenario quantile regression is an established method of tail analysis. It is well understood in terms of asymptotic properties and estimation quality. Another way to look at the tail of a distribution is via expectiles. They provide a valuable alternative since they come with a combination of preferable attributes. The easy weighted least squares estimation of expectiles and the quadratic penalties often used in flexible regression models are natural partners. Also, in a similar way as quantiles can be seen as a generalisation of median regression, expectiles offer a generalisation of mean regression. In addition to regression estimates, confidence intervals are essential for interpretational purposes and to assess the variability of the estimate, but there is a lack of knowledge regarding the asymptotic properties of a semiparametric expectile regression estimate. Therefore confidence intervals for expectiles based on an asymptotic normal distribution are introduced. Their properties are investigated by a simulation study and compared to a boostrap-based gold standard method. Finally the introduced confidence intervals help to evaluate a geoadditive expectile regression model on childhood malnutrition data from India.  相似文献   

17.
This paper presents a Bayesian analysis of partially linear additive models for quantile regression. We develop a semiparametric Bayesian approach to quantile regression models using a spectral representation of the nonparametric regression functions and the Dirichlet process (DP) mixture for error distribution. We also consider Bayesian variable selection procedures for both parametric and nonparametric components in a partially linear additive model structure based on the Bayesian shrinkage priors via a stochastic search algorithm. Based on the proposed Bayesian semiparametric additive quantile regression model referred to as BSAQ, the Bayesian inference is considered for estimation and model selection. For the posterior computation, we design a simple and efficient Gibbs sampler based on a location-scale mixture of exponential and normal distributions for an asymmetric Laplace distribution, which facilitates the commonly used collapsed Gibbs sampling algorithms for the DP mixture models. Additionally, we discuss the asymptotic property of the sempiparametric quantile regression model in terms of consistency of posterior distribution. Simulation studies and real data application examples illustrate the proposed method and compare it with Bayesian quantile regression methods in the literature.  相似文献   

18.
The computation of penalized quantile regression estimates is often computationally intensive in high dimensions. In this paper we propose a coordinate descent algorithm for computing the penalized smooth quantile regression (cdaSQR) with convex and nonconvex penalties. The cdaSQR approach is based on the approximation of the objective check function, which is not differentiable at zero, by a modified check function which is differentiable at zero. Then, using the maximization-minimization trick of the gcdnet algorithm (Yang and Zou in, J Comput Graph Stat 22(2):396–415, 2013), we update each coefficient simply and efficiently. In our implementation, we consider the convex penalties \(\ell _1+\ell _2\) and the nonconvex penalties SCAD (or MCP) \(+ \ell _2\). We establishe the convergence property of the csdSQR with \(\ell _1+\ell _2\) penalty. The numerical results show that our implementation is an order of magnitude faster than its competitors. Using simulations we compare the speed of our algorithm to its competitors. Finally, the performance of our algorithm is illustrated on three real data sets from diabetes, leukemia and Bardet–Bidel syndrome gene expression studies.  相似文献   

19.
The Lasso has sparked interest in the use of penalization of the log‐likelihood for variable selection, as well as for shrinkage. We are particularly interested in the more‐variables‐than‐observations case of characteristic importance for modern data. The Bayesian interpretation of the Lasso as the maximum a posteriori estimate of the regression coefficients, which have been given independent, double exponential prior distributions, is adopted. Generalizing this prior provides a family of hyper‐Lasso penalty functions, which includes the quasi‐Cauchy distribution of Johnstone and Silverman as a special case. The properties of this approach, including the oracle property, are explored, and an EM algorithm for inference in regression problems is described. The posterior is multi‐modal, and we suggest a strategy of using a set of perfectly fitting random starting values to explore modes in different regions of the parameter space. Simulations show that our procedure provides significant improvements on a range of established procedures, and we provide an example from chemometrics.  相似文献   

20.
Value at Risk (VaR) forecasts can be produced from conditional autoregressive VaR models, estimated using quantile regression. Quantile modeling avoids a distributional assumption, and allows the dynamics of the quantiles to differ for each probability level. However, by focusing on a quantile, these models provide no information regarding expected shortfall (ES), which is the expectation of the exceedances beyond the quantile. We introduce a method for predicting ES corresponding to VaR forecasts produced by quantile regression models. It is well known that quantile regression is equivalent to maximum likelihood based on an asymmetric Laplace (AL) density. We allow the density's scale to be time-varying, and show that it can be used to estimate conditional ES. This enables a joint model of conditional VaR and ES to be estimated by maximizing an AL log-likelihood. Although this estimation framework uses an AL density, it does not rely on an assumption for the returns distribution. We also use the AL log-likelihood for forecast evaluation, and show that it is strictly consistent for the joint evaluation of VaR and ES. Empirical illustration is provided using stock index data. Supplementary materials for this article are available online.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号