首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this paper is to study both the pointwise and uniform consistencies of the kernel regression estimate and to derive also rates of convergence whenever functional stationary ergodic data are considered. More precisely, in the ergodic data setting, we consider the regression of a real random variable Y over an explanatory random variable X taking values in some semi-metric separable abstract space. While estimating the regression function using the well-known Nadaraya-Watson estimator, we establish the strong pointwise and uniform consistencies with rates. Depending on the Vapnik-Chervonenkis size of the class over which uniformity is considered, the pointwise rate of convergence may be reached in the uniform case. Notice, finally, that the ergodic data framework extends the dependence setting to cases that are not covered by the usual mixing structures.  相似文献   

2.
3.
We consider the recursive estimation of a regression functional where the explanatory variables take values in some functional space. We prove the almost sure convergence of such estimates for dependent functional data. Also we derive the mean quadratic error of the considered class of estimators. Our results are established with rates and asymptotic appear bounds, under strong mixing condition. Finally, the feasibility of the proposed estimator is illustrated throughout an empirical study.  相似文献   

4.
5.
In the context of longitudinal data analysis, a random function typically represents a subject that is often observed at a small number of time point. For discarding this restricted condition of observation number of each subject, we consider the semiparametric partially linear regression models with mean function x?βx?β + g(z), where x and z   are functional data. The estimations of ββ and g(z) are presented and some asymptotic results are given. It is shown that the estimator of the parametric component is asymptotically normal. The convergence rate of the estimator of the nonparametric component is also obtained. Here, the observation number of each subject is completely flexible. Some simulation study is conducted to investigate the finite sample performance of the proposed estimators.  相似文献   

6.
Qingguo Tang 《Statistics》2013,47(2):388-404
A global smoothing procedure is developed using B-spline function approximation for estimating the unknown functions of a functional coefficient regression model with spatial data. A general formulation is used to treat mean regression, median regression, quantile regression and robust mean regression in one setting. The global convergence rates of the estimators of unknown coefficient functions are established. Various applications of the main results, including estimating conditional quantile coefficient functions and robustifying the mean regression coefficient functions are given. Finite sample properties of our procedures are studied through Monte Carlo simulations. A housing data example is used to illustrate the proposed methodology.  相似文献   

7.
In this paper, we investigate the k-nearest neighbours (kNN) estimation of nonparametric regression model for strong mixing functional time series data. More precisely, we establish the uniform almost complete convergence rate of the kNN estimator under some mild conditions. Furthermore, a simulation study and an empirical application to the real data analysis of sea surface temperature (SST) are carried out to illustrate the finite sample performances and the usefulness of the kNN approach.  相似文献   

8.
Here we consider wavelet-based identification and estimation of a censored nonparametric regression model via block thresholding methods and investigate their asymptotic convergence rates. We show that these estimators, based on block thresholding of empirical wavelet coefficients, achieve optimal convergence rates over a large range of Besov function classes, and in particular enjoy those rates without the extraneous logarithmic penalties that are usually suffered by term-by-term thresholding methods. This work is extension of results in Li et al. (2008). The performance of proposed estimator is investigated by a numerical study.  相似文献   

9.
We consider wavelet-based non linear estimators, which are constructed by using the thresholding of the empirical wavelet coefficients, for the mean regression functions with strong mixing errors and investigate their asymptotic rates of convergence. We show that these estimators achieve nearly optimal convergence rates within a logarithmic term over a large range of Besov function classes Bsp, q. The theory is illustrated with some numerical examples.

A new ingredient in our development is a Bernstein-type exponential inequality, for a sequence of random variables with certain mixing structure and are not necessarily bounded or sub-Gaussian. This moderate deviation inequality may be of independent interest.  相似文献   


10.
We study non-parametric regression estimates for random fields. The data satisfies certain strong mixing conditions and is defined on the regular N-dimensional lattice structure. We show consistency and obtain rates of convergence. The rates are optimal modulo a logarithmic factor in some cases. As an application, we estimate the regression function with multidimensional wavelets which are not necessarily isotropic. We simulate random fields on planar graphs with the concept of concliques (cf. [Kaiser MS, Lahiri SN, Nordman DJ. Goodness of fit tests for a class of markov random field models. Ann Statist. 2012;40:104–130]) in numerical examples of the estimation procedure.  相似文献   

11.
This article discusses the estimation of the parameter function for a functional linear regression model under heavy-tailed errors' distributions and in the presence of outliers. Standard approaches of reducing the high dimensionality, which is inherent in functional data, are considered. After reducing the functional model to a standard multiple linear regression model, a weighted rank-based procedure is carried out to estimate the regression parameters. A Monte Carlo simulation and a real-world example are used to show the performance of the proposed estimator and a comparison made with the least-squares and least absolute deviation estimators.  相似文献   

12.
In this note the problem of nonparametric regression function estimation in a random design regression model with Gaussian errors is considered from the Bayesian perspective. It is assumed that the regression function belongs to a class of functions with a known degree of smoothness. A prior distribution on the given class can be induced by a prior on the coefficients in a series expansion of the regression function through an orthonormal system. The rate of convergence of the resulting posterior distribution is employed to provide a measure of the accuracy of the Bayesian estimation procedure defined by the posterior expected regression function. We show that the Bayes’ estimator achieves the optimal minimax rate of convergence under mean integrated squared error over the involved class of regression functions, thus being comparable to other popular frequentist regression estimators.  相似文献   

13.
Abstract

Minimum distance estimation on the linear regression model with independent errors is known to yield an efficient and robust estimator. We extend the method to the model with strong mixing errors and obtain an estimator of the vector of the regression parameters. The goal of this article is to demonstrate the proposed estimator still retains efficiency and robustness. To that end, this article investigates asymptotic distributional properties of the proposed estimator and compares it with other estimators. The efficiency and the robustness of the proposed estimator are empirically shown, and its superiority over the other estimators is established.  相似文献   

14.
In this paper, we investigate the asymptotic properties of the kernel estimator for non parametric regression operator when the functional stationary ergodic data with randomly censorship are considered. More precisely, we introduce the kernel-type estimator of the non parametric regression operator with the responses randomly censored and obtain the almost surely convergence with rate as well as the asymptotic normality of the estimator. As an application, the asymptotic (1 ? ζ) confidence interval of the regression operator is also presented (0 < ζ < 1). Finally, the simulation study is carried out to show the finite-sample performances of the estimator.  相似文献   

15.
Nonparametric regression methods have been widely studied in functional regression analysis in the context of functional covariates and univariate response, but it is not the case for functional covariates with multivariate response. In this paper, we present two new solutions for the latter problem: the first is to directly extend the nonparametric method for univariate response to multivariate response, and in the second, the correlation among different responses is incorporated into the model. The asymptotic properties of the estimators are studied, and the effectiveness of the proposed methods is demonstrated through several simulation studies and a real data example.  相似文献   

16.
Functional linear models are useful in longitudinal data analysis. They include many classical and recently proposed statistical models for longitudinal data and other functional data. Recently, smoothing spline and kernel methods have been proposed for estimating their coefficient functions nonparametrically but these methods are either intensive in computation or inefficient in performance. To overcome these drawbacks, in this paper, a simple and powerful two-step alternative is proposed. In particular, the implementation of the proposed approach via local polynomial smoothing is discussed. Methods for estimating standard deviations of estimated coefficient functions are also proposed. Some asymptotic results for the local polynomial estimators are established. Two longitudinal data sets, one of which involves time-dependent covariates, are used to demonstrate the approach proposed. Simulation studies show that our two-step approach improves the kernel method proposed by Hoover and co-workers in several aspects such as accuracy, computational time and visual appeal of the estimators.  相似文献   

17.
In this article, a maximum likelihood estimator is derived in the generalized linear model-based regression profiles under monotonic change in Phase II. The performance of the proposed estimator is comprehensively investigated through some special cases, and compared with estimators under step change and drift. The results show that the proposed estimator has better performance in small and medium shifts under different increasing changes. Finally, the applicability of the proposed estimator is illustrated using a real case.  相似文献   

18.
We consider the problem of local linear estimation of the regression function when the regressor is functional. The main result of this paper is to prove the strong convergence (with rates), uniformly in bandwidth parameters (UIB), of the considered estimator. The main interest of this result is the possibility to derive the asymptotic properties of our estimate even if the bandwidth parameter is a random variable.  相似文献   

19.
In this paper, we investigate the relationship between a functional random covariable and a scalar response which is subject to left-truncation by another random variable. Precisely, we use the mean squared relative error as a loss function to construct a nonparametric estimator of the regression operator of these functional truncated data. Under some standard assumptions in functional data analysis, we establish the almost sure consistency, with rates, of the constructed estimator as well as its asymptotic normality. Then, a simulation study, on finite-sized samples, was carried out in order to show the efficiency of our estimation procedure and to highlight its superiority over the classical kernel estimation, for different levels of simulated truncated data.  相似文献   

20.
In this article, we propose a novel approach to fit a functional linear regression in which both the response and the predictor are functions. We consider the case where the response and the predictor processes are both sparsely sampled at random time points and are contaminated with random errors. In addition, the random times are allowed to be different for the measurements of the predictor and the response functions. The aforementioned situation often occurs in longitudinal data settings. To estimate the covariance and the cross‐covariance functions, we use a regularization method over a reproducing kernel Hilbert space. The estimate of the cross‐covariance function is used to obtain estimates of the regression coefficient function and of the functional singular components. We derive the convergence rates of the proposed cross‐covariance, the regression coefficient, and the singular component function estimators. Furthermore, we show that, under some regularity conditions, the estimator of the coefficient function has a minimax optimal rate. We conduct a simulation study and demonstrate merits of the proposed method by comparing it to some other existing methods in the literature. We illustrate the method by an example of an application to a real‐world air quality dataset. The Canadian Journal of Statistics 47: 524–559; 2019 © 2019 Statistical Society of Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号