首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary. We describe a model-based approach to analyse space–time surveillance data on meningococcal disease. Such data typically comprise a number of time series of disease counts, each representing a specific geographical area. We propose a hierarchical formulation, where latent parameters capture temporal, seasonal and spatial trends in disease incidence. We then add—for each area—a hidden Markov model to describe potential additional (autoregressive) effects of the number of cases at the previous time point. Different specifications for the functional form of this autoregressive term are compared which involve the number of cases in the same or in neighbouring areas. The two states of the Markov chain can be interpreted as representing an 'endemic' and a 'hyperendemic' state. The methodology is applied to a data set of monthly counts of the incidence of meningococcal disease in the 94 départements of France from 1985 to 1997. Inference is carried out by using Markov chain Monte Carlo simulation techniques in a fully Bayesian framework. We emphasize that a central feature of our model is the possibility of calculating—for each region and each time point—the posterior probability of being in a hyperendemic state, adjusted for global spatial and temporal trends, which we believe is of particular public health interest.  相似文献   

2.
Summary.  Because exposure to radon gas in buildings is a likely risk factor for lung cancer, estimation of residential radon levels is an important public health endeavour. Radon originates from uranium, and therefore data on the geographical distribution of uranium in the Earth's surface may inform about radon levels. We fit a Bayesian geostatistical model that appropriately combines data on uranium with measurements of indoor home radon in the state of Iowa, thereby obtaining more accurate and precise estimation of the geographic distribution of average residential radon levels than would be possible by using radon data alone.  相似文献   

3.
The Finnish common toad data of Heikkinen and Hogmander are reanalysed using an alternative fully Bayesian model that does not require a pseudolikelihood approximation and an alternative prior distribution for the true presence or absence status of toads in each 10 km×10 km square. Markov chain Monte Carlo methods are used to obtain posterior probability estimates of the square-specific presences of the common toad and these are presented as a map. The results are different from those of Heikkinen and Hogmander and we offer an explanation in terms of the prior used for square-specific presence of the toads. We suggest that our approach is more faithful to the data and avoids unnecessary confounding of effects. We demonstrate how to extend our model efficiently with square-specific covariates and illustrate this by introducing deterministic spatial changes.  相似文献   

4.
In this article, we develop statistical models for analysis of correlated mixed categorical (binary and ordinal) response data arising in medical and epidemi-ologic studies. There is evidence in the literature to suggest that models including correlation structure can lead to substantial improvement in precision of estimation or are more appropriate (accurate). We use a very rich class of scale mixture of multivariate normal (SMMVN) iink functions to accommodate heavy tailed distributions. In order to incorporate available historical information, we propose a unified prior elicitation scheme based on SMMVN-link models. Further, simulation-based techniques are developed to assess model adequacy. Finally, a real data example from prostate cancer studies is used to illustrate the proposed methodologies.  相似文献   

5.
Summary.  The method of Bayesian model selection for join point regression models is developed. Given a set of K +1 join point models M 0,  M 1, …,  M K with 0, 1, …,  K join points respec-tively, the posterior distributions of the parameters and competing models M k are computed by Markov chain Monte Carlo simulations. The Bayes information criterion BIC is used to select the model M k with the smallest value of BIC as the best model. Another approach based on the Bayes factor selects the model M k with the largest posterior probability as the best model when the prior distribution of M k is discrete uniform. Both methods are applied to analyse the observed US cancer incidence rates for some selected cancer sites. The graphs of the join point models fitted to the data are produced by using the methods proposed and compared with the method of Kim and co-workers that is based on a series of permutation tests. The analyses show that the Bayes factor is sensitive to the prior specification of the variance σ 2, and that the model which is selected by BIC fits the data as well as the model that is selected by the permutation test and has the advantage of producing the posterior distribution for the join points. The Bayesian join point model and model selection method that are presented here will be integrated in the National Cancer Institute's join point software ( http://www.srab.cancer.gov/joinpoint/ ) and will be available to the public.  相似文献   

6.
Mixture models are flexible tools in density estimation and classification problems. Bayesian estimation of such models typically relies on sampling from the posterior distribution using Markov chain Monte Carlo. Label switching arises because the posterior is invariant to permutations of the component parameters. Methods for dealing with label switching have been studied fairly extensively in the literature, with the most popular approaches being those based on loss functions. However, many of these algorithms turn out to be too slow in practice, and can be infeasible as the size and/or dimension of the data grow. We propose a new, computationally efficient algorithm based on a loss function interpretation, and show that it can scale up well in large data set scenarios. Then, we review earlier solutions which can scale up well for large data set, and compare their performances on simulated and real data sets. We conclude with some discussions and recommendations of all the methods studied.  相似文献   

7.
In the course of hypertension, cardiovascular disease events (e.g. stroke, heart failure) occur frequently and recurrently. The scientific interest in such study may lie in the estimation of treatment effect while accounting for the correlation among event times. The correlation among recurrent event times comes from two sources: subject-specific heterogeneity (e.g. varied lifestyles, genetic variations, and other unmeasurable effects) and event dependence (i.e. event incidences may change the risk of future recurrent events). Moreover, event incidences may change the disease progression so that there may exist event-varying covariate effects (the covariate effects may change after each event) and event effect (the effect of prior events on the future events). In this article, we propose a Bayesian regression model that not only accommodates correlation among recurrent events from both sources, but also explicitly characterizes the event-varying covariate effects and event effect. This model is especially useful in quantifying how the incidences of events change the effects of covariates and risk of future events. We compare the proposed model with several commonly used recurrent event models and apply our model to the motivating lipid-lowering trial (LLT) component of the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) (ALLHAT-LLT).  相似文献   

8.
Small area estimators in linear models are typically expressed as a convex combination of direct estimators and synthetic estimators from a suitable model. When auxiliary information used in the model is measured with error, a new estimator, accounting for the measurement error in the covariates, has been proposed in the literature. Recently, for area‐level model, Ybarra & Lohr (Biometrika, 95, 2008, 919) suggested a suitable modification to the estimates of small area means based on Fay & Herriot (J. Am. Stat. Assoc., 74, 1979, 269) model where some of the covariates are measured with error. They used a frequentist approach based on the method of moments. Adopting a Bayesian approach, we propose to rewrite the measurement error model as a hierarchical model; we use improper non‐informative priors on the model parameters and show, under a mild condition, that the joint posterior distribution is proper and the marginal posterior distributions of the model parameters have finite variances. We conduct a simulation study exploring different scenarios. The Bayesian predictors we propose show smaller empirical mean squared errors than the frequentist predictors of Ybarra & Lohr (Biometrika, 95, 2008, 919), and they seem also to be more stable in terms of variability and bias. We apply the proposed methodology to two real examples.  相似文献   

9.
In most practical applications, the quality of count data is often compromised due to errors-in-variables (EIVs). In this paper, we apply Bayesian approach to reduce bias in estimating the parameters of count data regression models that have mismeasured independent variables. Furthermore, the exposure model is misspecified with a flexible distribution, hence our approach remains robust against any departures from normality in its true underlying exposure distribution. The proposed method is also useful in realistic situations as the variance of EIVs is estimated instead of assumed as known, in contrast with other methods of correcting bias especially in count data EIVs regression models. We conduct simulation studies on synthetic data sets using Markov chain Monte Carlo simulation techniques to investigate the performance of our approach. Our findings show that the flexible Bayesian approach is able to estimate the values of the true regression parameters consistently and accurately.  相似文献   

10.
A uniform shrinkage prior (USP) distribution on the unknown variance component of a random-effects model is known to produce good frequency properties. The USP has a parameter that determines the shape of its density function, but it has been neglected whether the USP can maintain such good frequency properties regardless of the choice for the shape parameter. We investigate which choice for the shape parameter of the USP produces Bayesian interval estimates of random effects that meet their nominal confidence levels better than several existent choices in the literature. Using univariate and multivariate Gaussian hierarchical models, we show that the USP can achieve its best frequency properties when its shape parameter makes the USP behave similarly to an improper flat prior distribution on the unknown variance component.  相似文献   

11.
A computational problem in many fields is to evaluate multiple integrals and expectations simultaneously. Consider probability distributions with unnormalized density functions indexed by parameters on a 2-dimensional grid, and assume that samples are simulated from distributions on a subgrid. Examples of such unnormalized density functions include the observed-data likelihoods in the presence of missing data and the prior times the likelihood in Bayesian inference. There are various methods using a single sample only or multiple samples jointly to compute each integral. Path sampling seems a compromise, using samples along a 1-dimensional path to compute each integral. However, different choices of the path lead to different estimators, which should ideally be identical. We propose calibrated estimators by the method of control variates to exploit such constraints for variance reduction. We also propose biquadratic interpolation to approximate integrals with parameters outside the subgrid, consistently with the calibrated estimators on the subgrid. These methods can be extended to compute differences of expectations through an auxiliary identity for path sampling. Furthermore, we develop stepwise bridge-sampling methods in parallel but complementary to path sampling. In three simulation studies, the proposed methods lead to substantially reduced mean squared errors compared with existing methods.  相似文献   

12.
In this paper, we present a general formulation of an algorithm, the adaptive independent chain (AIC), that was introduced in a special context in Gåsemyr et al . [ Methodol. Comput. Appl. Probab. 3 (2001)]. The algorithm aims at producing samples from a specific target distribution Π, and is an adaptive, non-Markovian version of the Metropolis–Hastings independent chain. A certain parametric class of possible proposal distributions is fixed, and the parameters of the proposal distribution are updated periodically on the basis of the recent history of the chain, thereby obtaining proposals that get ever closer to Π. We show that under certain conditions, the algorithm produces an exact sample from Π in a finite number of iterations, and hence that it converges to Π. We also present another adaptive algorithm, the componentwise adaptive independent chain (CAIC), which may be an alternative in particular in high dimensions. The CAIC may be regarded as an adaptive approximation to the Gibbs sampler updating parametric approximations to the conditionals of Π.  相似文献   

13.
14.
Area‐level unmatched sampling and linking models have been widely used as a model‐based method for producing reliable estimates of small‐area means. However, one practical difficulty is the specification of a link function. In this paper, we relax the assumption of a known link function by not specifying its form and estimating it from the data. A penalized‐spline method is adopted for estimating the link function, and a hierarchical Bayes method of estimating area means is developed using a Markov chain Monte Carlo method for posterior computations. Results of simulation studies comparing the proposed method with a conventional approach based on a known link function are presented. In addition, the proposed method is applied to data from the Survey of Family Income and Expenditure in Japan and poverty rates in Spanish provinces.  相似文献   

15.
Summary.  We consider the application of Markov chain Monte Carlo (MCMC) estimation methods to random-effects models and in particular the family of discrete time survival models. Survival models can be used in many situations in the medical and social sciences and we illustrate their use through two examples that differ in terms of both substantive area and data structure. A multilevel discrete time survival analysis involves expanding the data set so that the model can be cast as a standard multilevel binary response model. For such models it has been shown that MCMC methods have advantages in terms of reducing estimate bias. However, the data expansion results in very large data sets for which MCMC estimation is often slow and can produce chains that exhibit poor mixing. Any way of improving the mixing will result in both speeding up the methods and more confidence in the estimates that are produced. The MCMC methodological literature is full of alternative algorithms designed to improve mixing of chains and we describe three reparameterization techniques that are easy to implement in available software. We consider two examples of multilevel survival analysis: incidence of mastitis in dairy cattle and contraceptive use dynamics in Indonesia. For each application we show where the reparameterization techniques can be used and assess their performance.  相似文献   

16.
We consider a set of data from 80 stations in the Venezuelan state of Guárico consisting of accumulated monthly rainfall in a time span of 16 years. The problem of modelling rainfall accumulated over fixed periods of time and recorded at meteorological stations at different sites is studied by using a model based on the assumption that the data follow a truncated and transformed multivariate normal distribution. The spatial correlation is modelled by using an exponentially decreasing correlation function and an interpolating surface for the means. Missing data and dry periods are handled within a Markov chain Monte Carlo framework using latent variables. We estimate the amount of rainfall as well as the probability of a dry period by using the predictive density of the data. We considered a model based on a full second-degree polynomial over the spatial co-ordinates as well as the first two Fourier harmonics to describe the variability during the year. Predictive inferences on the data show very realistic results, capturing the typical rainfall variability in time and space for that region. Important extensions of the model are also discussed.  相似文献   

17.
Summary.  A fully Bayesian analysis of directed graphs, with particular emphasis on applica- tions in social networks, is explored. The model is capable of incorporating the effects of covariates, within and between block ties and multiple responses. Inference is straightforward by using software that is based on Markov chain Monte Carlo methods. Examples are provided which highlight the variety of data sets that can be entertained and the ease with which they can be analysed.  相似文献   

18.
19.
We investigate a Bayesian method for the segmentation of muscle fibre images. The images are reasonably well approximated by a Dirichlet tessellation, and so we use a deformable template model based on Voronoi polygons to represent the segmented image. We consider various prior distributions for the parameters and suggest an appropriate likelihood. Following the Bayesian paradigm, the mathematical form for the posterior distribution is obtained (up to an integrating constant). We introduce a Metropolis-Hastings algorithm and a reversible jump Markov chain Monte Carlo algorithm (RJMCMC) for simulation from the posterior when the number of polygons is fixed or unknown. The particular moves in the RJMCMC algorithm are birth, death and position/colour changes of the point process which determines the location of the polygons. Segmentation of the true image was carried out using the estimated posterior mode and posterior mean. A simulation study is presented which is helpful for tuning the hyperparameters and to assess the accuracy. The algorithms work well on a real image of a muscle fibre cross-section image, and an additional parameter, which models the boundaries of the muscle fibres, is included in the final model.  相似文献   

20.
Summary. Reversible jump methods are the most commonly used Markov chain Monte Carlo tool for exploring variable dimension statistical models. Recently, however, an alternative approach based on birth-and-death processes has been proposed by Stephens for mixtures of distributions. We show that the birth-and-death setting can be generalized to include other types of continuous time jumps like split-and-combine moves in the spirit of Richardson and Green. We illustrate these extensions both for mixtures of distributions and for hidden Markov models. We demonstrate the strong similarity of reversible jump and continuous time methodologies by showing that, on appropriate rescaling of time, the reversible jump chain converges to a limiting continuous time birth-and-death process. A numerical comparison in the setting of mixtures of distributions highlights this similarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号