首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Poisson distribution is as important for discrete events as the normal distribution is to large sample data. In this note, we discuss a generalized Poisson distribution recently introduced in the statistics literature. We derive—for the first time—exact and explicit expressions for its moments and the cumulative distribution function for the case of over-dispersion. Computational issues are discussed to show the real value of these expressions.  相似文献   

2.
In this paper, we propose a new three-parameter model called the exponential–Weibull distribution, which includes as special models some widely known lifetime distributions. Some mathematical properties of the proposed distribution are investigated. We derive four explicit expressions for the generalized ordinary moments and a general formula for the incomplete moments based on infinite sums of Meijer's G functions. We also obtain explicit expressions for the generating function and mean deviations. We estimate the model parameters by maximum likelihood and determine the observed information matrix. Some simulations are run to assess the performance of the maximum likelihood estimators. The flexibility of the new distribution is illustrated by means of an application to real data.  相似文献   

3.
For any continuous baseline G distribution, Zografos and Balakrishnan [On families of beta- and generalized gamma-generated distributions and associated inference. Statist Methodol. 2009;6:344–362] introduced the generalized gamma-generated distribution with an extra positive parameter. A new three-parameter continuous model called the gamma-linear failure rate (LFR) distribution, which extends the LFR model, is proposed and studied. Various structural properties of the new distribution are derived, including some explicit expressions for ordinary and incomplete moments, generating function, probability-weighted moments, mean deviations and Rényi and Shannon entropies. We estimate the model parameters by maximum likelihood and obtain the observed information matrix. The new model is modified to cope with possible long-term survivors in lifetime data. We illustrate the usefulness of the proposed model by means of two applications to real data.  相似文献   

4.
Generalized order statistics constitute a unified model for ordered random variables that includes order statistics and record values among others. Here, we consider concomitants of generalized order statistics for the Farlie–Gumbel–Morgenstern bivariate distributions and study recurrence relations between their moments. We derive the joint distribution of concomitants of two generalized order statistics and obtain their product moments. Application of these results is seen in establishing some well known results given separately for order statistics and record values and obtaining some new results.  相似文献   

5.
A new five-parameter continuous distribution, the so-called McDonald Lomax distribution, that extends the Lomax distribution and some other distributions is proposed and studied. The model has as special sub-models new four- and three-parameter distributions. Various structural properties of the new distribution are derived, including expansions for the density function, explicit expressions for the moments, generating and quantile functions, mean deviations and Rényi entropy. The score function is derived and the estimation is performed by maximum likelihood. We also obtain the observed information matrix. An application illustrates the usefulness of the proposed model.  相似文献   

6.
ABSTRACT

In this article, main characteristics of a generalized Gumbel (GG) distribution are derived. Parameter estimation with method of moments, maximum likelihood, and Bayesian approaches are demonstrated. Due to the ranges of its skewness and kurtosis, it is satisfactory for fitting a wide variety of datasets. Also, it can be used to model block maxima or minima data due to its close connection with the standard Gumbel distribution. It is demonstrated that the GG distribution fits more accurately than both of the standard Gumbel and generalized extreme value distributions to block maxima data under specific conditions.  相似文献   

7.
We formulate and study a four-parameter lifetime model called the beta extended half-normal distribution. This model includes as sub-models the exponential, extended half-normal and half-normal distributions. We derive expansions for the new density function which do not depend on complicated functions. We obtain explicit expressions for the moments and incomplete moments, generating function, mean deviations, Bonferroni and Lorenz curves and Rényi entropy. In addition, the model parameters are estimated by maximum likelihood. We provide the observed information matrix. The new model is modified to cope with possible long-term survivors in the data. The usefulness of the new distribution is shown by means of two real data sets.  相似文献   

8.
Kumaraswamy [Generalized probability density-function for double-bounded random-processes, J. Hydrol. 462 (1980), pp. 79–88] introduced a distribution for double-bounded random processes with hydrological applications. For the first time, based on this distribution, we describe a new family of generalized distributions (denoted with the prefix ‘Kw’) to extend the normal, Weibull, gamma, Gumbel, inverse Gaussian distributions, among several well-known distributions. Some special distributions in the new family such as the Kw-normal, Kw-Weibull, Kw-gamma, Kw-Gumbel and Kw-inverse Gaussian distribution are discussed. We express the ordinary moments of any Kw generalized distribution as linear functions of probability weighted moments (PWMs) of the parent distribution. We also obtain the ordinary moments of order statistics as functions of PWMs of the baseline distribution. We use the method of maximum likelihood to fit the distributions in the new class and illustrate the potentiality of the new model with an application to real data.  相似文献   

9.
The McDonald extended distribution: properties and applications   总被引:1,自引:0,他引:1  
We study a five-parameter lifetime distribution called the McDonald extended exponential model to generalize the exponential, generalized exponential, Kumaraswamy exponential and beta exponential distributions, among others. We obtain explicit expressions for the moments and incomplete moments, quantile and generating functions, mean deviations, Bonferroni and Lorenz curves and Gini concentration index. The method of maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. The applicability of the new model is illustrated by means of a real data set.  相似文献   

10.
For the first time, we introduce a generalized form of the exponentiated generalized gamma distribution [Cordeiro et al. The exponentiated generalized gamma distribution with application to lifetime data, J. Statist. Comput. Simul. 81 (2011), pp. 827–842.] that is the baseline for the log-exponentiated generalized gamma regression model. The new distribution can accommodate increasing, decreasing, bathtub- and unimodal-shaped hazard functions. A second advantage is that it includes classical distributions reported in the lifetime literature as special cases. We obtain explicit expressions for the moments of the baseline distribution of the new regression model. The proposed model can be applied to censored data since it includes as sub-models several widely known regression models. It therefore can be used more effectively in the analysis of survival data. We obtain maximum likelihood estimates for the model parameters by considering censored data. We show that our extended regression model is very useful by means of two applications to real data.  相似文献   

11.
A five-parameter extension of the Weibull distribution capable of modelling a bathtub-shaped hazard rate function is introduced and studied. The beauty and importance of the new distribution lies in its ability to model both monotone and non-monotone failure rates that are quite common in lifetime problems and reliability. The proposed distribution has a number of well-known lifetime distributions as special sub-models, such as the Weibull, extreme value, exponentiated Weibull, generalized Rayleigh and modified Weibull (MW) distributions, among others. We obtain quantile and generating functions, mean deviations, Bonferroni and Lorenz curves and reliability. We provide explicit expressions for the density function of the order statistics and their moments. For the first time, we define the log-Kumaraswamy MW regression model to analyse censored data. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is determined. Two applications illustrate the potentiality of the proposed distribution.  相似文献   

12.
For the first time, we propose a five-parameter lifetime model called the McDonald Weibull distribution to extend the Weibull, exponentiated Weibull, beta Weibull and Kumaraswamy Weibull distributions, among several other models. We obtain explicit expressions for the ordinary moments, quantile and generating functions, mean deviations and moments of the order statistics. We use the method of maximum likelihood to fit the new distribution and determine the observed information matrix. We define the log-McDonald Weibull regression model for censored data. The potentiality of the new model is illustrated by means of two real data sets.  相似文献   

13.
14.
We derive explicit algebraic expressions for both of the single and product moments of order statistics from Topp–Leone distribution. We also give an identity about single moments of order statistics. These expressions will be useful for computational purposes.  相似文献   

15.
For the first time, we introduce the beta log-normal (LN) distribution for which the LN distribution is a special case. Various properties of the new distribution are discussed. Expansions for the cumulative distribution and density functions that do not involve complicated functions are derived. We obtain expressions for its moments and for the moments of order statistics. The estimation of parameters is approached by the method of maximum likelihood, and the expected information matrix is derived. The new model is quite flexible in analysing positive data as an important alternative to the gamma, Weibull, generalized exponential, beta exponential, and Birnbaum–Saunders distributions. The flexibility of the new distribution is illustrated in an application to a real data set.  相似文献   

16.
In this article, we investigate the potential usefulness of the three-parameter transmuted Weibull distribution for modeling survival data. The main advantage of this distribution is that it has increasing, decreasing or constant instantaneous failure rate depending on the shape parameter and the new transmuting parameter. We obtain several mathematical properties of the transmuted Weibull distribution such as the expressions for the quantile function, moments, geometric mean, harmonic mean, Shannon, Rényi and q-entropies, mean deviations, Bonferroni and Lorenz curves, and the moments of order statistics. We propose a location-scale regression model based on the log-transmuted Weibull distribution for modeling lifetime data. Applications to two real datasets are given to illustrate the flexibility and potentiality of the transmuted Weibull family of lifetime distributions.  相似文献   

17.
ABSTRACT

In this article, we define a new lifetime model called the Weibull–Dagum distribution. The proposed model is based on the Weibull–G class. It can also be defined by a simple transformation of the Weibull random variable. Its density function is very flexible and can be symmetrical, left-skewed, right-skewed, and reversed-J shaped. It has constant, increasing, decreasing, upside-down bathtub, bathtub, and reversed-J shaped hazard rate. Various structural properties are derived including explicit expressions for the quantile function, ordinary and incomplete moments, and probability weighted moments. We also provide explicit expressions for the Rényi and q-entropies. We derive the density function of the order statistics as a mixture of Dagum densities. We use maximum likelihood to estimate the model parameters and illustrate the potentiality of the new model by means of a simulation study and two applications to real data. In fact, the proposed model outperforms the beta-Dagum, McDonald–Dagum, and Dagum models in these applications.  相似文献   

18.
Abstract

Simple expressions are presented that relate cumulants to central moments without involving moments about the origin. These expressions are used to obtain recursive formulae for the central moments of the gamma distribution, with exponential and chi-square distributions as special cases.  相似文献   

19.
For any continuous baseline G distribution, Zografos and Balakrishnan [On families of beta- and generalized gamma-generated distributions and associated inference. Statist Methodol. 2009;6:344–362] proposed a generalized gamma-generated distribution with an extra positive parameter. A new three-parameter continuous distribution called the gamma-Lomax distribution, which extends the Lomax distribution is proposed and studied. Various structural properties of the new distribution are derived including explicit expressions for the moments, generating and quantile functions, mean deviations and Rényi entropy. The estimation of the model parameters is performed by maximum likelihood. We also determine the observed information matrix. An application illustrates the usefulness of the proposed model.  相似文献   

20.
Many distributions have been used as lifetime models. In this article, we propose a new three-parameter Weibull–Pareto distribution, which can produce the most important hazard rate shapes, namely, constant, increasing, decreasing, bathtub, and upsidedown bathtub. Various structural properties of the new distribution are derived including explicit expressions for the moments and incomplete moments, Bonferroni and Lorenz curves, mean deviations, mean residual life, mean waiting time, and generating and quantile functions. The Rényi and q entropies are also derived. We obtain the density function of the order statistics and their moments. The model parameters are estimated by maximum likelihood and the observed information matrix is determined. The usefulness of the new model is illustrated by means of two real datasets on Wheaton river flood and bladder cancer. In the two applications, the new model provides better fits than the Kumaraswamy–Pareto, beta-exponentiated Pareto, beta-Pareto, exponentiated Pareto, and Pareto models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号